skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SDSS-IV MaNGA: Refining Strong Line Diagnostic Classifications Using Spatially Resolved Gas Dynamics
We use the statistical power of the MaNGA integral-field spectroscopic galaxy survey to improve the definition of strong line diagnostic boundaries used to classify gas ionization properties in galaxies. We detect line emission from 3.6 million spaxels distributed across 7400 individual galaxies spanning a wide range of stellar masses, star formation rates, and morphological types, and find that the gas-phase velocity dispersion σHα correlates strongly with traditional optical emission-line ratios such as [S II]/Hα, [N II]/Hα, [O I]/Hα, and [O III]/Hβ. Spaxels whose line ratios are most consistent with ionization by galactic H II regions exhibit a narrow range of dynamically cold line-of-sight velocity distributions (LOSVDs) peaked around 25 km s-1 corresponding to a galactic thin disk, while those consistent with ionization by active galactic nuclei (AGNs) and low-ionization emission-line regions (LI(N)ERs) have significantly broader LOSVDs extending to 200 km s-1. Star-forming, AGN, and LI(N)ER regions are additionally well separated from each other in terms of their stellar velocity dispersion, stellar population age, Hα equivalent width, and typical radius within a given galaxy. We use our observations to revise the traditional emission-line diagnostic classifications so that they reliably identify distinct dynamical samples both in two-dimensional representations of the diagnostic line ratio space and in a multidimensional space that accounts for the complex folding of the star-forming model surface. By comparing the MaNGA observations to the SDSS single-fiber galaxy sample, we note that the latter is systematically biased against young, low-metallicity star-forming regions that lie outside of the 3″ fiber footprint.  more » « less
Award ID(s):
1814682
PAR ID:
10484823
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
915
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Current methods of identifying the ionizing source of nebular emission in galaxies are well defined for the era of single-fiber spectroscopy, but still struggle to differentiate the complex and overlapping ionization sources in some galaxies. With the advent of integral field spectroscopy, the limits of these previous classification schemes are more apparent. We propose a new method for distinguishing the ionizing source in resolved galaxy spectra by use of a multidimensional diagnostic diagram that compares emission-line ratios with velocity dispersion on a spaxel-by-spaxel basis within a galaxy. This new method is tested using the Sydney-Australian-Astronomical-Observatory Multi-object Integral-Field Spectrograph Galaxy Survey (SAMI) Data Release 3 (DR3), which contains 3068 galaxies atz< 0.12. Our results are released as ionization maps available alongside the SAMI DR3 public data. Our method accounts for a more diverse range of ionization sources than the standard suite of emission-line diagnostics; we find 1433 galaxies with a significant contribution from non-star-forming ionization using our improved method as compared to 316 galaxies identified using only emission-line ratio diagnostics. Within these galaxies, we further identify 886 galaxies hosting unique signatures inconsistent with standard ionization by Hiiregions, active galactic nuclei, or shocks. These galaxies span a wide range of masses and morphological types and comprise a sizable portion of the galaxies used in our sample. With our revised method, we show that emission-line diagnostics alone do not adequately differentiate the multiple ways to ionize gas within a galaxy. 
    more » « less
  2. The Sloan Digital Sky Survey IV Mapping Nearby Galaxies at APO (MaNGA) program has been operating from 2014 to 2020, and has now observed a sample of 9269 galaxies in the low redshift universe (z ∼ 0.05) with integral-field spectroscopy. With rest-optical (λλ0.36-1.0 μm) spectral resolution R ∼ 2000 the instrumental spectral line-spread function (LSF) typically has 1σ width of about 70 km s-1, which poses a challenge for the study of the typically 20-30 km s-1 velocity dispersion of the ionized gas in present-day disk galaxies. In this contribution, we present a major revision of the MaNGA data pipeline architecture, focusing particularly on a variety of factors impacting the effective LSF (e.g., under-sampling, spectral rectification, and data cube construction). Through comparison with external assessments of the MaNGA data provided by substantially higher-resolution R ∼ 10,000 instruments, we demonstrate that the revised MPL-10 pipeline measures the instrumental LSF sufficiently accurately (≤0.6% systematic, 2% random around the wavelength of Hα) that it enables reliable measurements of astrophysical velocity dispersions σHα ∼ 20 km s-1 for spaxels with emission lines detected at signal-to-noise ratio > 50. Velocity dispersions derived from [O II], Hβ, [O III], [N II], and [S II] are consistent with those derived from Hα to within about 2% at σHα > 30 km s-1. Although the impact of these changes to the estimated LSF will be minimal at velocity dispersions greater than about 100 km s-1, scientific results from previous data releases that are based on dispersions far below the instrumental resolution should be reevaluated. 
    more » « less
  3. null (Ed.)
    Optical emission lines are used to categorize galaxies into three groups according to their dominant central radiation source: active galactic nuclei, star formation, or low-ionization (nuclear) emission regions [LI(N)ERs] that may trace ionizing radiation from older stellar populations. Using the Wisconsin H-Alpha Mapper, we detect optical line emission in low-extinction windows within eight degrees of Galactic Center. The emission is associated with the 1.5-kiloparsec-radius “Tilted Disk” of neutral gas. We modify a model of this disk and find that the hydrogen gas observed is at least 48% ionized. The ratio [NII] λ6584 angstroms/Hα λ6563 angstroms increases from 0.3 to 2.5 with Galactocentric radius; [OIII] λ5007 angstroms and Hβ λ4861 angstroms are also sometimes detected. The line ratios for most Tilted Disk sightlines are characteristic of LI(N)ER galaxies. 
    more » « less
  4. null (Ed.)
    ABSTRACT We analyse the rest-optical emission-line spectra of z ∼ 2.3 star-forming galaxies in the complete MOSFIRE Deep Evolution Field (MOSDEF) survey. In investigating the origin of the well-known offset between the sequences of high-redshift and local galaxies in the [O iii]λ5008/Hβ versus [N ii]λ6585/Hα (‘[N ii] BPT’) diagram, we define two populations of z ∼ 2.3 MOSDEF galaxies. These include the high population that is offset towards higher [O iii]λ5008/Hβ and/or [N ii]λ6585/Hα with respect to the local SDSS sequence and the low population that overlaps the SDSS sequence. These two groups are also segregated within the [O  iii]λ5008/Hβ versus [S ii]λλ6718,6733/Hα and the [O iii]λλ4960,5008/[O ii ]λλ3727,3730 (O32) versus ([O  iii]λλ4960,5008+[O ii]λλ3727,3730)/Hβ (R23) diagrams, which suggests qualitatively that star-forming regions in the more offset galaxies are characterized by harder ionizing spectra at fixed nebular oxygen abundance. We also investigate many galaxy properties of the split sample and find that the high sample is on average smaller in size and less massive, but has higher specific star formation rate (SFR) and SFR surface density values and is slightly younger compared to the low population. From Cloudy+BPASS photoionization models, we estimate that the high population has a lower stellar metallicity (i.e. harder ionizing spectrum) but slightly higher nebular metallicity and higher ionization parameter compared to the low population. While the high population is more α-enhanced (i.e. higher α/Fe) than the low population, both samples are significantly more α-enhanced compared to local star-forming galaxies with similar rest-optical line ratios. These differences must be accounted for in all high-redshift star-forming galaxies – not only those ‘offset’ from local excitation sequences. 
    more » « less
  5. Abstract We present spatially resolved spectroscopy from the Keck Cosmic Web Imager (KCWI) of a star-forming galaxy at z = 0.6942, which shows emission from the Mg ii λ λ 2796, 2803 doublet in the circumgalactic medium (CGM) extending ∼37 kpc at 3 σ significance in individual spaxels (1 σ detection limit 4.8 × 10 −19 erg s −1 cm −2 arcsec −2 ). The target galaxy, selected from a near-UV spectroscopic survey of Mg ii line profiles at 0.3 < z < 1.4, has a stellar mass log ( M * / M ⊙ ) = 9.9, a star formation rate of 50 M ⊙ yr −1 , and a morphology indicative of a merger. After deconvolution with the seeing, we obtain 5 σ detections of Mg ii line emission extending for ∼31 kpc measured in 7-spaxel (1.1 arcsec 2 ) apertures. Spaxels covering the galaxy stellar regions show clear P Cygni−like emission/absorption profiles, with the blueshifted absorption extending to relative velocities of v = −800 km s −1 ; however, the P Cygni profiles give way to pure emission at large radii from the central galaxy. We have performed 3D radiative transfer modeling to infer the geometry and velocity and density profiles of the outflowing gas. Our observations are most consistent with an isotropic outflow rather than biconical wind models with half-opening angles ϕ ≤ 80°. Furthermore, our modeling suggests that a wind velocity profile that decreases with radius is necessary to reproduce the velocity widths and strengths of Mg ii line emission profiles at large circumgalactic radii. The extent of the Mg ii emission we measure directly is further corroborated by our modeling, where we rule out outflow models with extent <30 kpc. 
    more » « less