skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SDSS-IV MaNGA: Modeling the Spectral Line-spread Function to Subpercent Accuracy
The Sloan Digital Sky Survey IV Mapping Nearby Galaxies at APO (MaNGA) program has been operating from 2014 to 2020, and has now observed a sample of 9269 galaxies in the low redshift universe (z ∼ 0.05) with integral-field spectroscopy. With rest-optical (λλ0.36-1.0 μm) spectral resolution R ∼ 2000 the instrumental spectral line-spread function (LSF) typically has 1σ width of about 70 km s-1, which poses a challenge for the study of the typically 20-30 km s-1 velocity dispersion of the ionized gas in present-day disk galaxies. In this contribution, we present a major revision of the MaNGA data pipeline architecture, focusing particularly on a variety of factors impacting the effective LSF (e.g., under-sampling, spectral rectification, and data cube construction). Through comparison with external assessments of the MaNGA data provided by substantially higher-resolution R ∼ 10,000 instruments, we demonstrate that the revised MPL-10 pipeline measures the instrumental LSF sufficiently accurately (≤0.6% systematic, 2% random around the wavelength of Hα) that it enables reliable measurements of astrophysical velocity dispersions σHα ∼ 20 km s-1 for spaxels with emission lines detected at signal-to-noise ratio > 50. Velocity dispersions derived from [O II], Hβ, [O III], [N II], and [S II] are consistent with those derived from Hα to within about 2% at σHα > 30 km s-1. Although the impact of these changes to the estimated LSF will be minimal at velocity dispersions greater than about 100 km s-1, scientific results from previous data releases that are based on dispersions far below the instrumental resolution should be reevaluated.  more » « less
Award ID(s):
1814682
PAR ID:
10484824
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The American Astronomical Society
Date Published:
Journal Name:
The Astronomical Journal
Volume:
161
Issue:
2
ISSN:
1538-3881
Page Range / eLocation ID:
52
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We have re-observed $$\rm \sim$$40 low-inclination, star-forming galaxies from the MaNGA survey (σ ∼ 65 km s−1) at ∼6.5 times higher spectral resolution (σ ∼ 10 km s−1) using the HexPak integral field unit on the WIYN 3.5-m telescope. The aim of these observations is to calibrate MaNGA’s instrumental resolution and to characterize turbulence in the warm interstellar medium and ionized galactic outflows. Here we report the results for the Hα region observations as they pertain to the calibration of MaNGA’s spectral resolution. Remarkably, we find that the previously reported MaNGA line-spread-function (LSF) Gaussian width is systematically underestimated by only 1 per cent. The LSF increase modestly reduces the characteristic dispersion of H ii regions-dominated spectra sampled at 1–2 kpc spatial scales from 23 to 20 km s−1 in our sample, or a 25 per cent decrease in the random-motion kinetic energy. This commensurately lowers the dispersion zeropoint in the relation between line-width and star-formation rate surface-density in galaxies sampled on the same spatial scale. This modest zero-point shift does not appear to alter the power-law slope in the relation between line-width and star-formation rate surface-density. We also show that adopting a scheme whereby corrected line-widths are computed as the square root of the median of the difference in the squared measured line width and the squared LSF Gaussian avoids biases and allows for lower signal-to-noise data to be used reliably. 
    more » « less
  2. We use the statistical power of the MaNGA integral-field spectroscopic galaxy survey to improve the definition of strong line diagnostic boundaries used to classify gas ionization properties in galaxies. We detect line emission from 3.6 million spaxels distributed across 7400 individual galaxies spanning a wide range of stellar masses, star formation rates, and morphological types, and find that the gas-phase velocity dispersion σHα correlates strongly with traditional optical emission-line ratios such as [S II]/Hα, [N II]/Hα, [O I]/Hα, and [O III]/Hβ. Spaxels whose line ratios are most consistent with ionization by galactic H II regions exhibit a narrow range of dynamically cold line-of-sight velocity distributions (LOSVDs) peaked around 25 km s-1 corresponding to a galactic thin disk, while those consistent with ionization by active galactic nuclei (AGNs) and low-ionization emission-line regions (LI(N)ERs) have significantly broader LOSVDs extending to 200 km s-1. Star-forming, AGN, and LI(N)ER regions are additionally well separated from each other in terms of their stellar velocity dispersion, stellar population age, Hα equivalent width, and typical radius within a given galaxy. We use our observations to revise the traditional emission-line diagnostic classifications so that they reliably identify distinct dynamical samples both in two-dimensional representations of the diagnostic line ratio space and in a multidimensional space that accounts for the complex folding of the star-forming model surface. By comparing the MaNGA observations to the SDSS single-fiber galaxy sample, we note that the latter is systematically biased against young, low-metallicity star-forming regions that lie outside of the 3″ fiber footprint. 
    more » « less
  3. Abstract The Sloan Digital Sky Survey MaNGA program has now obtained integral field spectroscopy for over 10,000 galaxies in the nearby universe. We use the final MaNGA data release DR17 to study the correlation between ionized gas velocity dispersion and galactic star formation rate, finding a tight correlation in whichσfrom galactic Hiiregions increases significantly from ∼18–30 km s−1, broadly in keeping with previous studies. In contrast,σfrom diffuse ionized gas increases more rapidly from 20–60 km s−1. Using the statistical power of MaNGA, we investigate these correlations in greater detail using multiple emission lines and determine that the observed correlation ofσwith local star formation rate surface density is driven primarily by the global relation of increasing velocity dispersion at higher total star formation rate, as are apparent correlations with stellar mass. Assuming Hiiregion models consistent with our finding thatσ[OIII][O I], we estimate the velocity dispersion of the molecular gas in which the individual Hiiregions are embedded, finding valuesσMol= 5–30 km s−1consistent with ALMA observations in a similar mass range. Finally, we use variations in the relation with inclination and disk azimuthal angle to constrain the velocity dispersion ellipsoid of the ionized gasσzr= 0.84 ± 0.03 andσϕr= 0.91 ± 0.03, similar to that of young stars in the Galactic disk. Our results are most consistent with the theoretical models in which turbulence in modern galactic disks is driven primarily by star formation feedback. 
    more » « less
  4. Abstract We analyze the cool gas in and around 14 nearby galaxies (atz< 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (Hi, Ni, Oi, and Ari), low-ionization (Siii, Sii, Cii, Nii, and Feii), and high-ionization (Siiii, Feiii, Nv, and Ovi) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity usingcloudyphotoionization models. The Hicolumn density ranges from ∼1013to ∼1020cm−2and decreases with impact parameter forr≳Re. Galaxies with higher stellar mass have weaker Hiabsorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10Re. Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower Hicolumn density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM. 
    more » « less
  5. Abstract High-velocity outflows are ubiquitous in compact, massive (M*∼ 1011M),z∼ 0.5 galaxies with extreme star formation surface densities (ΣSFR∼ 2000Myr−1kpc−2). We have previously detected and characterized these outflows using Mgiiabsorption lines. To probe their full extent, we present Keck/KCWI integral field spectroscopy of the [Oii] and Mgiiemission nebulae surrounding all of the 12 galaxies in this study. We find that [Oii] is more effective than Mgiiin tracing low surface brightness, extended emission in these galaxies. The [Oii] nebulae are spatially extended beyond the stars, with radial extentR90between 10 and 40 kpc. The nebulae exhibit nongravitational motions, indicating galactic outflows with maximum blueshifted velocities ranging from −335 to −1920 km s−1. The outflow kinematics correlate with the bursty star formation histories of these galaxies. Galaxies with the most recent bursts of star formation (within the last <3 Myr) exhibit the highest central velocity dispersions (σ≳ 400 km s−1), while the oldest bursts have the lowest-velocity outflows. Many galaxies exhibit both high-velocity cores and more extended, slower-moving gas indicative of multiple outflow episodes. The slower, larger outflows occurred earlier and have decelerated as they propagate into the circumgalactic medium and mix on timescales ≳50 Myr. 
    more » « less