skip to main content


Title: Luminosities and Masses of Single Galactic Post-asymptotic Giant Branch Stars with Distances from Gaia EDR3: The Revelation of an s-process Diversity
Abstract

Post-asymptotic giant branch (AGB) stars are exquisite probes of AGB nucleosynthesis. However, the previous lack of accurate distances jeopardized comparison with theoretical AGB models. The Gaia Early Data Release 3 (Gaia EDR3) has now allowed for a breakthrough in this research landscape. In this study, we focus on a sample of single Galactic post-AGBs for which chemical abundance studies were completed. We combined photometry with geometric distances to carry out a spectral energy distribution (SED) analysis and derive accurate luminosities. We subsequently determined their positions on the Hertzsprung-Russell (HR) diagram and compared this with theoretical post-AGB evolutionary tracks. While most objects are in the post-AGB phase of evolution, we found a subset of low-luminosity objects that are likely to be in the post-horizontal branch phase of evolution, similar to AGB-manqué objects found in globular clusters. Additionally, we also investigated the observed bimodality in thes-process enrichment of Galactic post-AGB single stars of similarTeffand metallicities. This bimodality was expected to be a direct consequence of luminosity with thes-process rich objects having evolved further on the AGB. However, we find that the two populations, thes-process enriched and non-enriched, have similar luminosities (and hence initial masses), revealing an intriguing chemical diversity. For a given initial mass and metallicity, AGB nucleosynthesis appears inhomogeneous and sensitive to other factors, which could be mass loss, along with convective and non-convective mixing mechanisms. Modeling individual objects in detail will be needed to investigate which parameters and processes dominate the photospheric chemical enrichment in these stars.

 
more » « less
NSF-PAR ID:
10484864
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
927
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L13
Size(s):
["Article No. L13"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. Stars evolving along the asymptotic giant branch (AGB) can become carbon rich in the final part of their evolution. The detailed description of their spectra has led to the definition of several spectral types: N, SC, J, and R. To date, differences among them have been partially established only on the basis of their chemical properties. Aims. An accurate determination of the luminosity function (LF) and kinematics together with their chemical properties is extremely important for testing the reliability of theoretical models and establishing on a solid basis the stellar population membership of the different carbon star types. Methods. Using Gaia Data Release 2 ( Gaia DR2) astrometry, we determine the LF and kinematic properties of a sample of 210 carbon stars with different spectral types in the solar neighbourhood with measured parallaxes better than 20%. Their spatial distribution and velocity components are also derived. Furthermore, the use of the infrared Wesenheit function allows us to identify the different spectral types in a Gaia -2MASS diagram. Results. We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at M bol  ∼ −5.2 mag. The resulting LF, however, shows two tails at lower and higher luminosities more extended than those previously found, indicating that AGB carbon stars with solar metallicity may reach M bol  ∼ −6.0 mag. This contrasts with the narrower LF derived in Galactic carbon Miras from previous studies. We find that J-type stars are about half a magnitude fainter on average than N- and SC-type stars, while R-hot stars are half a magnitude brighter than previously found, although fainter in any case by several magnitudes than other carbon types. Part of these differences are due to systematically lower parallaxes measured by Gaia DR2 with respect to H IPPARCOS values, in particular for sources with parallax ϖ < 1 mas. The Galactic spatial distribution and velocity components of the N-, SC-, and J-type stars are very similar, while about 30% of the R-hot stars in the sample are located at distances greater than ∼500 pc from the Galactic plane, and show a significant drift with respect to the local standard of rest. Conclusions. The LF derived for N- and SC-type in the solar neighbourhood fully agrees with the expected luminosity of stars of 1.5−3 M ⊙ on the AGB. On a theoretical basis, the existence of an extended low-luminosity tail would require a contribution of extrinsic low-mass carbon stars, while the high-luminosity tail would imply that stars with mass values up to ∼5 M ⊙ may become carbon stars on the AGB. J-type stars differ significantly not only in their chemical composition with respect to the N- and SC-types, but also in their LF, which reinforces the idea that these carbon stars belong to a different type whose origin is still unknown. The derived luminosities of R-hot stars means that it is unlikely that these stars are in the red-clump, as previously claimed. On the other hand, the derived spatial distribution and kinematic properties, together with their metallicity values, indicate that most of the N-, SC-, and J-type stars belong to the thin disc population, while a significant fraction of R-hot stars show characteristics compatible with the thick disc. 
    more » « less
  2. Asymptotic Giant Branch (AGB) stars play a key role in the chemical evolution of galaxies. These stars are the fundamental stellar site for the production of light elements such as C, N and F, and half of the elements heavier than Fe via the slow neutron capture process (s-process). Hence, detailed computational models of AGB stars’ evolution and nucleosynthesis are essential for galactic chemical evolution. In this work, we discuss the progress in updating the NuGrid data set of AGB stellar models and abundance yields. All stellar models have been computed using the MESA stellar evolution code, coupled with the post-processing mppnp code to calculate the full nucleosynthesis. The final data set will include the initial masses Mini/M⊙ = 1, 1.65, 2, 3, 4, 5, 6 and 7 for initial metallicities Z = 0.0001, 0.001, 0.006, 0.01, 0.02 and 0.03. Observed s-process abundances on the surfaces of evolved stars as well as the typical light elements in the composition of H-deficient post-AGB stars are reproduced. A key short-term goal is to complete and expand the AGB stars data set for the full metallicity range. Chemical yield tables are provided for the available models. 
    more » « less
  3. null (Ed.)
    The slow neutron-capture process (s-process) efficiency in low-mass AGB stars (1.5 < M/M⊙ < 3) critically depends on how mixing processes in stellar interiors are handled, which is still affected by considerable uncertainties. In this work, we compute the evolution and nucleosynthesis of low-mass AGB stars at low metallicities using the MESA stellar evolution code. The combined data set includes models with initial masses Mini/M⊙=2 and 3 for initial metallicities Z=0.001 and 0.002. The nucleosynthesis was calculated for all relevant isotopes by post-processing with the NuGrid mppnp code. Using these models, we show the impact of the uncertainties affecting the main mixing processes on heavy element nucleosynthesis, such as convection and mixing at convective boundaries. We finally compare our theoretical predictions with observed surface abundances on low-metallicity stars. We find that mixing at the interface between the He-intershell and the CO-core has a critical impact on the s-process at low metallicities, and its importance is comparable to convective boundary mixing processes under the convective envelope, which determine the formation and size of the 13C-pocket. Additionally, our results indicate that models with very low to no mixing below the He-intershell during thermal pulses, and with a 13C-pocket size of at least ∼3 × 10−4 M⊙, are strongly favored in reproducing observations. Online access to complete yield data tables is also provided. 
    more » « less
  4. Abstract

    Analysis of inclusions in primitive meteorites reveals that several short-lived radionuclides (SLRs) with half-lives of 0.1–100 Myr existed in the early solar system (ESS). We investigate the ESS origin of107Pd,135Cs, and182Hf, which are produced byslowneutron captures (thes-process) in asymptotic giant branch (AGB) stars. We modeled the Galactic abundances of these SLRs using theOMEGA+galactic chemical evolution (GCE) code and two sets of mass- and metallicity-dependent AGB nucleosynthesis yields (Monash and FRUITY). Depending on the ratio of the mean-lifeτof the SLR to the average length of time between the formations of AGB progenitorsγ, we calculate timescales relevant for the birth of the Sun. Ifτ/γ≳ 2, we predict self-consistent isolation times between 9 and 26 Myr by decaying the GCE predicted107Pd/108Pd,135Cs/133Cs, and182Hf/180Hf ratios to their respective ESS ratios. The predicted107Pd/182Hf ratio indicates that our GCE models are missing 9%–73% of107Pd and108Pd in the ESS. This missing component may have come from AGB stars of higher metallicity than those that contributed to the ESS in our GCE code. Ifτ/γ≲ 0.3, we calculate instead the time (TLE) from the last nucleosynthesis event that added the SLRs into the presolar matter to the formation of the oldest solids in the ESS. For the 2M,Z= 0.01 Monash model we find a self-consistent solution ofTLE= 25.5 Myr.

     
    more » « less
  5. Abstract

    Low- and intermediate-mass (0.8M<M< 8M) stars that evolve into planetary nebulae (PNe) play an important role in tracing and driving Galactic chemical evolution. Spectroscopy of PNe enables access to both the initial composition of their progenitor stars and products of their internal nucleosynthesis, but determining accurate ionic and elemental abundances of PNe requires high-quality optical spectra. We obtained new optical spectra of eight highly-extincted PNe with limited optical data in the literature using the Low Resolution Spectrograph 2 on the Hobby–Eberly Telescope. Extinction coefficients, electron temperatures and densities, and ionic and elemental abundances of up to 11 elements (He, N, O, Ne, S, Cl, Ar, K, Fe, Kr, and Xe) are determined for each object in our sample. Where available, astrometric data from Gaia eDR3 is used to kinematically characterize the probability that each object belongs to the Milky Way's thin disk, thick disk, or halo. Four of the PNe show kinematic and chemical signs of thin disk membership, while two may be members of the thick disk. The remaining two targets lack Gaia data, but their solar O, Ar, and Cl abundances suggest thin disk membership. Additionally, we report the detection of broad emission features from the central star of M 3–35. Our results significantly improve the available information on the nebular parameters and chemical compositions of these objects, which can inform future analyses.

     
    more » « less