Abstract The homogeneous exciton linewidth, which captures the coherent quantum dynamics of an excitonic state, is a vital parameter in exploring light–matter interactions in 2D transition metal dichalcogenides (TMDs). An efficient control of the exciton linewidth is of great significance, and in particular of its intrinsic linewidth, which determines the minimum timescale for the coherent manipulation of excitons. However, such a control is rarely achieved in TMDs at room temperature (RT). While the intrinsic A exciton linewidth is down to 7 meV in monolayer WS2, the reported RT linewidth is typically a few tens of meV due to inevitable homogeneous and inhomogeneous broadening effects. Here, it is shown that a 7.18 meV near‐intrinsic linewidth can be observed at RT when monolayer WS2is coupled with a moderate‐refractive‐index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2through the nanosphere‐supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. Such modulation of exciton linewidth and its associated mechanism are robust even in presence of defects, easing the sample quality requirement and providing new opportunities for TMD‐based nanophotonics and optoelectronics. 
                        more » 
                        « less   
                    
                            
                            Contributions to the optical linewidth of shallow donor-bound excitonic transition in ZnO
                        
                    
    
            Neutral shallow donors in zinc oxide (ZnO) are spin qubits with optical access via the donor-bound exciton. This spin–photon interface enables applications in quantum networking, memories, and transduction. Essential optical parameters which impact the spin–photon interface include radiative lifetime, optical inhomogeneous and homogeneous linewidth, and optical depth. We study the donor-bound exciton optical linewidth properties of Al, Ga, and In donors in single-crystal ZnO. The ensemble photoluminescence linewidth ranges from 4 to 11 GHz, less than two orders of magnitude larger than the expected lifetime-limited linewidth. The ensemble linewidth remains narrow in absorption through samples with an estimated optical depth up to several hundred. The primary thermal relaxation mechanism is identified and found to have a negligible contribution to the total linewidth at 2 K. We find that inhomogeneous broadening due to the disordered isotopic environment in natural ZnO is significant, contributing 2 GHz. Two-laser spectral hole burning measurements indicate that the dominant mechanism, however, is homogeneous. Despite this broadening, the high homogeneity, large optical depth, and potential for isotope purification indicate that the optical properties of the ZnO donor-bound exciton are promising for a wide range of quantum technologies, and motivate a need to improve the isotope and chemical purity of ZnO for quantum technologies. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2212017
- PAR ID:
- 10484893
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica Quantum
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2837-6714
- Format(s):
- Medium: X Size: Article No. 7
- Size(s):
- Article No. 7
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established. These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform. Here, the fundamental photophysical properties of these emitters are probed through measurements of optical transition wavelengths, linewidths, and photon antibunching as a function of temperature from 4.2K to 300K. Important insight into the potential for lifetime-limited linewidths is provided through measurements of inhomogeneous and temperature-dependent homogeneous broadening of the zero-phonon lines. At 4.2K, spectral diffusion was found to be the main broadening mechanism, while time-resolved spectroscopy measurements revealed homogeneously broadened zero-phonon lines with instrument-limited linewidths.more » « less
- 
            Optically active defects in solid-state systems have many applications in quantum information and sensing. However, unlike free atoms, which have fixed optical transition frequencies, the inhomogeneous broadening of the transitions in solid-state environments limit their use as identical scatterers for such applications. Here we show that crystals of argon and neon prepared in a closed-cycle cryostat doped with thulium atoms at cryogenic temperatures are an exception. High resolution absorption and emission spectroscopy show that the 1140 nm magnetic dipole transition is split into multiple components. The origin of this splitting is likely a combination of different classes of trapping sites, crystal field effects within each site, and hyperfine interactions. The individual lines have ensemble widths as small as 0.6 GHz, which temperature dependence and pump-probe spectroscopy indicate is likely a homogeneous effect, suggesting inhomogeneity is well below the GHz scale.more » « less
- 
            Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control, and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges—SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9)% gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature-dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10) μs at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies.more » « less
- 
            Abstract A robust process for fabricating intrinsic single‐photon emitters in silicon nitride is recently established. These emitters show promise for quantum applications due to room‐temperature operation and monolithic integration with technologically mature silicon nitride photonics platforms. Here, the fundamental photophysical properties of these emitters are probed through measurements of optical transition wavelengths, linewidths, and photon antibunching as a function of temperature from 4.2 to 300 K. Important insight into the potential for lifetime‐limited linewidths is provided through measurements of inhomogeneous and temperature‐dependent broadening of the zero‐phonon lines. At 4.2 K, spectral diffusion is found to be the main broadening mechanism, while spectroscopy time series reveal zero‐phonon lines with instrument‐limited linewidths.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
