In this paper, we discuss how data-driven approaches using emerging IoT and machine learning based analytics can revolutionize the resilience and ef=iciency of urban water systems. Key challenges in creating a next generation water infrastructure includes issues of how and where to place instruments to gather a wide variety of information useful for improving operational ef=iciencies and for damage detection after major disasters. We discuss how an understanding of deployed infrastructure in diverse geographies and the dynamics of interconnected systems can help design more effective placement of technology solutions. We showcase recent work illustrating how knowledge of network structures and their behavior can help to more effectively instrument and gather operational data and how AI-based approaches utilizing geospatial data more effectively can help to maintain real-time awareness of system states which allows decision makers to more effectively monitor and control their systems.
more »
« less
Effect of Community Water Service on Lead in Drinking Water in an Environmental Justice Community
- Award ID(s):
- 2246584
- PAR ID:
- 10484895
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Environmental Science & Technology
- Volume:
- 58
- Issue:
- 3
- ISSN:
- 0013-936X
- Format(s):
- Medium: X Size: p. 1441-1451
- Size(s):
- p. 1441-1451
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Providing Better Support for Entrepreneurial Activities in the Weather, Water, and Climate CommunityAbstract There has been an increase in entrepreneurial activity within the weather, water, and climate (WWC) community over the past decade, with the potential for much more as artificial intelligence/machine learning techniques continue to develop and as new opportunities arise across the weather, climate, and ocean service enterprises. Despite indications of recent growth, this study reports on key challenges that are limiting the community’s ability to achieve the full potential of commercialization of new WWC products and services. Most of these challenges are related to the preparation of those in the WWC community for jobs in the private sector in general and entrepreneurial activities in particular. These results extend and build upon the work of others who have reported on shortcomings in the preparation of students for positions in the private sector, with this study showing that deficits in preparation and awareness of available resources affect potential entrepreneurs well into their career—most researchers are unaware of the resources available to them. Based on a synthesis of input from successful WWC entrepreneurs, many of the challenges could be greatly reduced by relatively minor adjustments to curriculums at universities and through new programs that could be offered by scientific and professional societies to help potential entrepreneurs better take advantage of existing resources as they spin up a new business.more » « less
-
Abstract Because of the pervasive role of water in the Earth system, the relative abundances of stable isotopologues of water are valuable for understanding atmospheric, oceanic, and biospheric processes, and for interpreting paleoclimate proxy reconstructions. Isotopologues are transported by both large‐scale and turbulent flows, and the ratio of heavy to light isotopologues changes due to fractionation that can accompany condensation and evaporation processes. Correctly predicting the isotopic distributions requires resolving the relationships between large‐scale ocean and atmospheric circulation and smaller‐scale hydrological processes, which can be accomplished within a coupled climate modeling framework. Here we present the water isotope‐enabled version of the Community Earth System Model version 1 (iCESM1), which simulates global variations in water isotopic ratios in the atmosphere, land, ocean, and sea ice. In a transient Last Millennium simulation covering the 850–2005 period, iCESM1 correctly captures the late‐twentieth‐century structure of δ18O and δD over the global oceans, with more limited accuracy over land. The relationship between salinity and seawater δ18O is also well represented over the observational period, including interbasin variations. We illustrate the utility of coupled, isotope‐enabled simulations using both Last Millennium simulations and freshwater hosing experiments with iCESM1. Closing the isotopic mass balance between all components of the coupled model provides new confidence in the underlying depiction of the water cycle in CESM, while also highlighting areas where the underlying hydrologic balance can be improved. The iCESM1 is poised to be a vital community resource for ongoing model development with both modern and paleoclimate applications.more » « less
An official website of the United States government
