skip to main content

This content will become publicly available on January 8, 2025

Title: Phylogeny and biogeography of the sharpshooters (Hemiptera: Cicadellidae: Cicadellinae)

Sharpshooters (Cicadellinae), a large subfamily of the Cicadellidae, exhibit a global distribution and a broad array of ecological preferences. To explore the phylogenetic relationships and roles of global historical, biotic and biogeographic processes in the diversification of sharpshooters, we analysed DNA sequence data from three mitochondrial and two nuclear genes for 243 taxa representing all Cicadellinae tribes, generic groups, regional faunas and data of geographic distributions of sharpshooter species compiled from online databases and available literature. The maximum likelihood (ML) and Bayesian inference (BI) analyses strongly support the monophyletic clade including Cicadellinae and Phereurininae. Divergence time estimates and biogeographic analyses suggest that sharpshooters originated in the Neotropical region or were more widespread in Gondwana during the Early Cretaceous and diversified through a combination of ancient vicariance and dispersal following the evolution of angiosperm‐dominated habitats. The earliest divergence during the Cretaceous gave rise to Oriental and New World lineages, the latter of which subsequently dispersed into the Old World and gave rise to the diverse endemic fauna of Madagascar. The Oriental lineage shows high diversity and endemism in tropical Asia and the Pacific, with striking distributional discontinuities in Wallacea. These results suggest that a combination of environmental and evolutionary factors including continental‐scale vicariance, long‐distance dispersal and diversification of terrestrial microhabitats and host plants may explain the diversity of the modern sharpshooter fauna.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Systematic Entomology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    We explore the biogeographic history of the Gondwanan lineage Triaenonychidae, a dispersal‐limited arachnid taxon that underwent a recent taxonomic revision based on phylogenomic data. We explicitly test hypotheses related to a biogeographical pattern of ‘common vicariance, rare dispersal’, predicted for dispersal‐limited taxa.


    Continental landmasses of former temperate Gondwanan terranes (southern South America, southern Africa, Madagascar, Australia, New Zealand, and New Caledonia).


    Triaenonychidae, Opiliones, Arachnida.


    Utilizing a recently published phylogenomic data set based on ultra‐conserved elements, we conduct Bayesian divergence dating analyses, ancestral area estimation in a likelihood model testing framework, and analyses of macroevolutionary dynamics. Results are correlated with geological history and palaeoclimate reconstructions to infer biogeographic history and distribution.


    We find that divergence dates of ancestral Triaenonychidae pre‐date continental breakup of Gondwana and could be attributed to palaeoclimatic differentiation across Gondwana. There is evidence for two separate expansion routes that span eastern and western Gondwana corresponding to northern warmer climate and southern cooler climate lineages. Many divergences across intercontinental lineages coincide with the timing of continental fragmentation, supporting vicariance as a dominant force. However, some lineages are supported as obvious examples of rare long‐distance dispersal. Biogeographic results support the predicted pattern of common vicariance and rare dispersal for these dispersal‐limited organisms.

    Main conclusions

    Vicariance due to continental fragmentation was important in the early diversification of Triaenonychidae. Their unique combination and degrees of dispersal ability and microhabitat preference resulted in complex phylogenetic patterns of geographic distribution not typically seen in other animal taxa. Examining biogeographic patterns across recent studies of arachnid taxa with varying dispersal ability, it is clear that biological characteristics play an important role in the relative importance of dispersal and vicariance (dispersal–vicariance continuum) for any given taxon and can be useful in forming testable a priori hypotheses.

    more » « less
  2. Abstract

    The origin of taxa presenting a disjunct distribution between Africa and Asia has puzzled biogeographers for more than a century. This biogeographic pattern has been hypothesized to be the result of transoceanic long‐distance dispersal, Oligocene dispersal through forested corridors, Miocene dispersal through the Arabian Peninsula or passive dispersal on the rifting Indian plate. However, it has often been difficult to pinpoint the mechanisms at play. We investigate biotic exchange between the Afrotropics and the Oriental region during the Cenozoic, a period in which geological changes altered landmass connectivity. We use Baorini skippers (Lepidoptera, Hesperiidae) as a model, a widespread clade of butterflies in the Old World tropics with a disjunct distribution between the Afrotropics and the Oriental region. We use anchored phylogenomics to infer a robust evolutionary tree for Baorini skippers and estimate divergence times and ancestral ranges to test biogeographic hypotheses. Our phylogenomic tree recovers strongly supported relationships for Baorini skippers and clarifies the systematics of the tribe. Dating analyses suggest that these butterflies originated in the Oriental region, Greater Sunda Islands, and the Philippines in the early Miocenec. 23 Ma. Baorini skippers dispersed from the Oriental region towards Africa at least five times in the past 20 Ma. These butterflies colonized the Afrotropics primarily through trans‐Arabian geodispersal after the closure of the Tethyan seaway in the mid‐Miocene. Range expansion from the Oriental region towards the African continent probably occurred via theGomphotheriumland bridge through the Arabian Peninsula. Alternative scenarios invoking long‐distance dispersal and vicariance are not supported. The Miocene climate change and biome shift from forested areas to grasslands possibly facilitated geodispersal in this clade of butterflies.

    more » « less
  3. The sunflower family, Asteraceae, comprises 10% of all flowering plant species and displays an incredible diversity of form. Asteraceae are clearly monophyletic, yet resolving phylogenetic relationships within the family has proven difficult, hindering our ability to understand its origin and diversification. Recent molecular clock dating has suggested a Cretaceous origin, but the lack of deep sampling of many genes and representative taxa from across the family has impeded the resolution of migration routes and diversifications that led to its global distribution and tremendous diversity. Here we use genomic data from 256 terminals to estimate evolutionary relationships, timing of diversification(s), and biogeographic patterns. Our study places the origin of Asteraceae at ∼83 MYA in the late Cretaceous and reveals that the family underwent a series of explosive radiations during the Eocene which were accompanied by accelerations in diversification rates. The lineages that gave rise to nearly 95% of extant species originated and began diversifying during the middle Eocene, coincident with the ensuing marked cooling during this period. Phylogenetic and biogeographic analyses support a South American origin of the family with subsequent dispersals into North America and then to Asia and Africa, later followed by multiple worldwide dispersals in many directions. The rapid mid-Eocene diversification is aligned with the biogeographic range shift to Africa where many of the modern-day tribes appear to have originated. Our robust phylogeny provides a framework for future studies aimed at understanding the role of the macroevolutionary patterns and processes that generated the enormous species diversity of Asteraceae. 
    more » « less

    A disjunct distribution, where a species’ geographic range is discontinuous, can occur through vicariance or long‐distance dispersal. Approximately 75 North American plant species exhibit a ~650 km disjunction between the Ozark and Appalachian regions. This disjunction is attributed to biogeographic forces including: (1) Eocene–Oligocene vicariance by the formation of the Mississippi embayment; (2) Pleistocene vicariance from interglacial flooding; (3) post‐Pleistocene northward colonization from separate glacial refugia; (4) Hypsithermal vicariance due to climate fluctuations; and (5) recent long‐distance dispersal. We investigated which of these pathways most likely gave rise to the Appalachian‐Ozark disjunction inDelphinium exaltatum.


    We genotyped populations ofD. exaltatumfrom five Ozark and seven Appalachian localities, analyzed genetic structure, tested the order and timing of divergences usingDIYABC, and conducted niche reconstructions up to 21,000 years before present (YBP).


    Populations fell into five main genetic clusters, i.e., a group in the central Appalachians, and four “lowland” groups. DIYABC analyses showed the central Appalachian and lowland lineages diverging 11,300 to17,000 YBP, and the lowland groups diverging 6800 to 10,900 YBP. Niche reconstructions showed that suitable climate for the central Appalachian lineage experienced large spatial discontinuity starting 14,000 YBP, such that divergence and persistence before this period is less plausible than divergence thereafter.


    Our results did not fully support any of the original hypotheses. Rather, the oldest divergence likely occurred after 13,500 YBP through expansion into newly opened habitat in the Appalachians. The Appalachian‐Ozark disjunction likely resulted from northward dispersal of the lowland lineage as climate warmed during the Holocene.

    more » « less
  5. The West Indian mammal fauna has played a key role in the development of biogeographic ideas for over a century, but a synthesis explaining regional patterns of mammal diversity and distribution in a historical framework has not emerged. We review recent phylogenetic, population genetic, and radiocarbon dating studies of West Indian mammals and explore the biological and historical drivers of colonization, speciation, and extinction in this region of endemism. We also present the first complete list of all its extant and extinct mammals. The mammalian biota is older than was earlier presumed, with many ancient endemic lineages, even among highly vagile organisms such as bats. Land bridges, Cenozoic eustatic sea-level changes, and Pleistocene glacial cycles have been proposed to explain the colonization of the islands, but phylogenetic divergence analyses often conlict with the timing of these events and favor alternative biogeographic histories. The loss of West Indian biodiversity is incompletely understood, but new radiometric chronologies indicate that anthropogenic impacts rather than glacial-interglacial environmental changes are responsible for most Quaternary extinction and extirpation events involving land mammals. However, many outstanding questions of historical biogeography remain unresolved, including appropriate methods for interpreting phylogenies and divergence estimates in a biogeographic context, and whether to use vicariance or dispersal as the null hypothesis when investigating regional patterns of colonization, speciation, and extinction in comparative analyses. We propose synthetic approaches drawing from phylogenetics, population genetics, paleogeography, paleontology, and even archaeology to resolve persisting questions in Caribbean biogeography. 
    more » « less