Abstract We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee atD= 32 ± 3 Mpc, finding excess flux in the first days after explosion, particularly in our 10 minutes cadence TESS light curve and Swift UV data. Compared to a few other normal SNe Ia with early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Siii, Cii,and Caiiabsorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models on the origin of early excess flux in SNe Ia. Interaction with either the companion star or close-in circumstellar material is expected to produce a faster evolution than observed. Radioactive material in the outer layers of the ejecta, either from double detonation explosion or from a56Ni clump near the surface, cannot fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.
more »
« less
A Speed Bump: SN 2021aefx Shows that Doppler Shift Alone Can Explain Early Excess Blue Flux in Some Type Ia Supernovae
Abstract We present early-time photometric and spectroscopic observations of the Type Ia supernova (SN Ia) 2021aefx. The early-timeu-band light curve shows an excess flux when compared to normal SNe Ia. We suggest that the early excess blue flux may be due to a rapid change in spectral velocity in the first few days post explosion, produced by the emission of the CaiiH&K feature passing from theuto theBbands on the timescale of a few days. This effect could be dominant for all SNe Ia that have broad absorption features and early-time velocities over 25,000 km s−1. It is likely to be one of the main causes of early excessu-band flux in SNe Ia that have early-time high velocities. This effect may also be dominant in the UV filters, as well as in places where the SN spectral energy distribution is quickly rising to longer wavelengths. The rapid change in velocity can only produce a monotonic change (in flux-space) in theuband. For objects that explode at lower velocities, and have a more structured shape in the early excess emission, there must also be an additional parameter producing the early-time diversity. More early-time observations, in particular early spectra, are required to determine how prominent this effect is within SNe Ia.
more »
« less
- PAR ID:
- 10484944
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 932
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L2
- Size(s):
- Article No. L2
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively “03fg-like” SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon–oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB= −18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peakB-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [Oi]λλ6300, 6364 (FWHM ≈ 2000 km s−1), strong, broad emission from [Caii]λλ7291, 7323 (FWHM ≈ 7300 km s−1), and a rapid Feiiito Feiiionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (withT≈ 500 K), combined with prominent [Oi] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.more » « less
-
Abstract We present photometric and spectroscopic data for SN 2022joj, a nearby peculiar Type Ia supernova (SN Ia) with a fast decline rate (Δm15,B= 1.4 mag). SN 2022joj shows exceedingly red colors, with a value of approximatelyB−V≈ 1.1 mag during its initial stages, beginning from 11 days before maximum brightness. As it evolves, the flux shifts toward the blue end of the spectrum, approachingB−V≈ 0 mag around maximum light. Furthermore, at maximum light and beyond, the photometry is consistent with that of typical SNe Ia. This unusual behavior extends to its spectral characteristics, which initially displayed a red spectrum and later evolved to exhibit greater consistency with typical SNe Ia. Spectroscopically, we find strong agreement between SN 2022joj and double detonation models with white dwarf masses of around 1M⊙and a thin He shell between 0.01 and 0.05M⊙. Moreover, the early red colors are explained by line-blanketing absorption from iron peak elements created by the double detonation scenario in similar mass ranges. The nebular spectra in SN 2022joj deviate from expectations for double detonation, as we observe strong [Feiii] emission instead of [Caii] lines as anticipated, though this is not as robust a prediction as early red colors and spectra. The fact that as He shells get thinner these SNe start to look more like normal SNe Ia raises the possibility that this is the triggering mechanism for the majority of SNe Ia, though evidence would be missed if the SNe are not observed early enough.more » « less
-
Abstract Seeing pristine material from the donor star in a type Ia supernova (SN Ia) explosion can reveal the nature of the binary system. In this paper, we present photometric and spectroscopic observations of SN 2020esm, one of the best-studied SNe of the class of “super-Chandrasekhar” SNe Ia (SC SNe Ia), with data obtained −12 to +360 days relative to peak brightness, obtained from a variety of ground- and space-based telescopes. Initially misclassified as a type II supernova, SN 2020esm peaked at M B = −19.9 mag, declined slowly (Δ m 15 ( B ) = 0.92 mag), and had particularly blue UV and optical colors at early times. Photometrically and spectroscopically, SN 2020esm evolved similarly to other SC SNe Ia, showing the usual low ejecta velocities, weak intermediate-mass elements, and the enhanced fading at late times, but its early spectra are unique. Our first few spectra (corresponding to a phase of ≳10 days before peak) reveal a nearly pure carbon/oxygen atmosphere during the first days after explosion. This composition can only be produced by pristine material, relatively unaffected by nuclear burning. The lack of H and He may further indicate that SN 2020esm is the outcome of the merger of two carbon/oxygen white dwarfs. Modeling its bolometric light curve, we find an 56 Ni mass of 1.23 − 0.14 + 0.14 M ☉ and an ejecta mass of 1.75 − 0.20 + 0.32 M ☉ , in excess of the Chandrasekhar mass. Finally, we discuss possible progenitor systems and explosion mechanisms of SN 2020esm and, in general, the SC SNe Ia class.more » « less
-
Abstract We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining Type Ia supernova (SN Ia) in NGC 1784 (D≈ 31 Mpc), from <1 to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion, which are critical to distinguishing between explosion scenarios. The early light curve of SN 2022xkq has a red early color and exhibits a flux excess that is more prominent in redder bands; this is the first time such a feature has been seen in a transitional/91bg-like SN Ia. We also present 92 optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a long-lived Ci1.0693μm feature that persists until 5 days post-maximum. We also detect Ciiλ6580 in the pre-maximum optical spectra. These lines are evidence for unburnt carbon that is difficult to reconcile with the double detonation of a sub-Chandrasekhar mass white dwarf. No existing explosion model can fully explain the photometric and spectroscopic data set of SN 2022xkq, but the considerable breadth of the observations is ideal for furthering our understanding of the processes that produce faint SNe Ia.more » « less