Abstract With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.
more »
« less
SMOOTH DENSITY SPATIAL QUANTILE REGRESSION
We derive the properties and demonstrate the desirability of a model-based method for estimating the spatially-varying effects of covariates on the quantile function. By modeling the quantile function as a combination of I-spline basis functions and Pareto tail distributions, we allow for flexible parametric modeling of the extremes while preserving non-parametric flexibility in the center of the distribution. We further establish that the model guarantees the desired degree of differentiability in the density function and enables the estimation of non-stationary covariance functions dependent on the predictors. We demonstrate through a simulation study that the proposed method produces more efficient estimates of the effects of predictors than other methods, particularly in distributions with heavy tails. To illustrate the utility of the model we apply it to measurements of benzene collected around an oil refinery to determine the effect of an emission source within the refinery on the distribution of the fence line measurements.
more »
« less
- Award ID(s):
- 1916208
- PAR ID:
- 10485011
- Publisher / Repository:
- Academica Sinica
- Date Published:
- Journal Name:
- Statistica Sinica
- ISSN:
- 1017-0405
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Triangular systems with nonadditively separable unobserved heterogeneity provide a theoretically appealing framework for the modeling of complex structural relationships. However, they are not commonly used in practice due to the need for exogenous variables with large support for identification, the curse of dimensionality in estimation, and the lack of inferential tools. This paper introduces two classes of semiparametric nonseparable triangular models that address these limitations. They are based on distribution and quantile regression modeling of the reduced form conditional distributions of the endogenous variables. We show that average, distribution, and quantile structural functions are identified in these systems through a control function approach that does not require a large support condition. We propose a computationally attractive three‐stage procedure to estimate the structural functions where the first two stages consist of quantile or distribution regressions. We provide asymptotic theory and uniform inference methods for each stage. In particular, we derive functional central limit theorems and bootstrap functional central limit theorems for the distribution regression estimators of the structural functions. These results establish the validity of the bootstrap for three‐stage estimators of structural functions, and lead to simple inference algorithms. We illustrate the implementation and applicability of all our methods with numerical simulations and an empirical application to demand analysis.more » « less
-
Chiappa, Silvia; Calandra, Roberto (Ed.)Random forests are powerful non-parametric regression method but are severely limited in their usage in the presence of randomly censored observations, and naively applied can exhibit poor predictive performance due to the incurred biases. Based on a local adaptive representation of random forests, we develop its regression adjustment for randomly censored regression quantile models. Regression adjustment is based on a new estimating equation that adapts to censoring and leads to quantile score whenever the data do not exhibit censoring. The proposed procedure named censored quantile regression forest, allows us to estimate quantiles of time-to-event without any parametric modeling assumption. We establish its consistency under mild model specifications. Numerical studies showcase a clear advantage of the proposed procedure.more » « less
-
Abstract This paper extends the application of quantile-based Bayesian inference to probability distributions defined in terms of quantiles of observable quantities. Quantile-parameterized distributions are characterized by high shape flexibility and parameter interpretability, making them useful for eliciting information about observables. To encode uncertainty in the quantiles elicited from experts, we propose a Bayesian model based on the metalog distribution and a variant of the Dirichlet prior. We discuss the resulting hybrid expert elicitation protocol, which aims to characterize uncertainty in parameters by asking questions about observable quantities. We also compare and contrast this approach with parametric and predictive elicitation methods.more » « less
-
Abstract Many large‐scale surveys collect both discrete and continuous variables. Small‐area estimates may be desired for means of continuous variables, proportions in each level of a categorical variable, or for domain means defined as the mean of the continuous variable for each level of the categorical variable. In this paper, we introduce a conditionally specified bivariate mixed‐effects model for small‐area estimation, and provide a necessary and sufficient condition under which the conditional distributions render a valid joint distribution. The conditional specification allows better model interpretation. We use the valid joint distribution to calculate empirical Bayes predictors and use the parametric bootstrap to estimate the mean squared error. Simulation studies demonstrate the superior performance of the bivariate mixed‐effects model relative to univariate model estimators. We apply the bivariate mixed‐effects model to construct estimates for small watersheds using data from the Conservation Effects Assessment Project, a survey developed to quantify the environmental impacts of conservation efforts. We construct predictors of mean sediment loss, the proportion of land where the soil loss tolerance is exceeded, and the average sediment loss on land where the soil loss tolerance is exceeded. In the data analysis, the bivariate mixed‐effects model leads to more scientifically interpretable estimates of domain means than those based on two independent univariate models.more » « less
An official website of the United States government

