Abstract Terrestrial groundwater travels through subterranean estuaries before reaching the sea. Groundwater‐derived nutrients drive coastal water quality, primary production, and eutrophication. We determined how dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved organic nitrogen (DON) are transformed within subterranean estuaries and estimated submarine groundwater discharge (SGD) nutrient loads compiling > 10,000 groundwater samples from 216 sites worldwide. Nutrients exhibited complex, nonconservative behavior in subterranean estuaries. Fresh groundwater DIN and DIP are usually produced, and DON is consumed during transport. Median total SGD (saline and fresh) fluxes globally were 5.4, 2.6, and 0.18 Tmol yr−1for DIN, DON, and DIP, respectively. Despite large natural variability, total SGD fluxes likely exceed global riverine nutrient export. Fresh SGD is a small source of new nutrients, but saline SGD is an important source of mostly recycled nutrients. Nutrients exported via SGD via subterranean estuaries are critical to coastal biogeochemistry and a significant nutrient source to the oceans.
more »
« less
Small Reservoirs as Nitrogen Transformers: Accounting for Seasonal Variability in Inorganic and Organic Nitrogen Processing
Abstract Anthropogenic nitrogen (N) inputs to the landscape have serious consequences for inland and coastal waters. Reservoirs are effective at mitigating downstream N fluxes but measurements have generally focused on large reservoirs and have not considered seasonal variability or all N forms. In this study, we conducted an N mass balance in eight small reservoirs (surface area <0.55 km2) in coastal New England over annual time periods, including both inorganic and organic forms of N. We found that small reservoirs have high capacity for dissolved inorganic N (DIN) retention during low and moderate discharge, but are roughly in balance for DIN at higher discharge. Because proportional DIN retention occurred when N inputs were at their lowest, their effect on downstream N fluxes is small over annual time frames. Further, dissolved organic N (DON) was also evident during low flow late in the warm season. Accounting for DON production, the net effect of reservoirs on total dissolved N (TDN) fluxes was limited. These transformations between inorganic and organic N should be considered when evaluating the effect of small reservoirs on TDN fluxes over seasonal and annual timescales. With dam removal becoming a common solution to aging, unsafe dams, their ability to retain or produce N must be scrutinized at longer time scales while accounting for the complete N pool to better comprehend the effect their reservoirs have on downstream waters.
more »
« less
- Award ID(s):
- 1637630
- PAR ID:
- 10485013
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Edition / Version:
- 1.0
- Volume:
- 128
- Issue:
- 11
- ISSN:
- 2169-8953
- Page Range / eLocation ID:
- 1-18
- Subject(s) / Keyword(s):
- nitrogen, small streams
- Format(s):
- Medium: X Size: 2MB Other: pdf/A
- Size(s):
- 2MB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It is widely recognized that nitrogen (N) inputs from watersheds to estuaries are modified during transport through river networks, but changes within tidal freshwater zones (TFZs) have been largely overlooked. This paper sheds new light on the role that TFZs play in modifying the timing and forms of N inputs to estuaries by (1) characterizing spatial and temporal variability of N concentrations and forms in the TFZs of the Mission and Aransas rivers, Texas, USA, and (2) examining seasonal fluxes of N into and out of the Aransas River TFZ. Median concentrations of dissolved inorganic N (DIN) were lower in the TFZs than in upstream non-tidal river reaches and exhibited spatial gradients linked to locations of major N inputs. These spatial patterns were stronger during winter than summer. The forms of N also changed substantially, with DIN changing to organic N (primarily phytoplankton) within the TFZs. Discharge and N flux comparisons for the Aransas River TFZ demonstrated that secular tidal patterns modulate the timing of N export during baseflow conditions: N export far exceeded input during winter, whereas export and input were relatively balanced during summer. While more data are needed to build an annual N budget, our results show that TFZ can change the timing and form of N export immediately upstream of estuaries.more » « less
-
The concurrent reduction in acid deposition and increase in precipitation impact stream solute dynamics in complex ways that make predictions of future water quality difficult. To understand how changes in acid deposition and precipitation have influenced dissolved organic carbon (DOC) and nitrogen (N) loading to streams, we investigated trends from 1991 to 2018 in stream concentrations (DOC, ~3,800 measurements), dissolved organic nitrogen (DON, ~1,160 measurements), and dissolved inorganic N (DIN, ~2,130 measurements) in a forested watershed in Vermont, USA. Our analysis included concentration-discharge (C-Q) relationships and Seasonal Mann-Kendall tests on long-term, flow-adjusted concentrations. To understand whether hydrologic flushing and changes in acid deposition influenced long-term patterns by liberating DOC and dissolved N from watershed soils, we measured their concentrations in the leachate of 108 topsoil cores of 5 cm diameter that we flushed with solutions simulating high and low acid deposition during four different seasons. Our results indicate that DOC and DON often co-varied in both the long-term stream dataset and the soil core experiment. Additionally, leachate from winter soil cores produced especially high concentrations of all three solutes. This seasonal signal was consistent with C-Q relation showing that organic materials (e.g., DOC and DON), which accumulate during winter, are flushed into streams during spring snowmelt. Acid deposition had opposite effects on DOC and DON compared to DIN in the soil core experiment. Low acid deposition solutions, which mimic present day precipitation, produced the highest DOC and DON leachate concentrations. Conversely, high acid deposition solutions generally produced the highest DIN leachate concentrations. These results are consistent with the increasing trend in stream DOC concentrations and generally decreasing trend in stream DIN we observed in the long-term data. These results suggest that the impact of acid deposition on the liberation of soil carbon (C) and N differed for DOC and DON vs. DIN, and these impacts were reflected in long-term stream chemistry patterns. As watersheds continue to recover from acid deposition, stream C:N ratios will likely continue to increase, with important consequences for stream metabolism and biogeochemical processes.more » « less
-
Abstract Dissolved inorganic nutrient concentrations in the surface waters (0 to 5 m) of the Northern Gulf of Mexico (NGoM) were analyzed from 1985 to 2019 (> 10,000 observations) to determine spatiotemporal trends and their connection to nutrients supplied from the Mississippi/Atchafalaya River (MAR). In the NGoM, annual mean dissolved inorganic P (DIP) concentrations increased significantly over time, while dissolved inorganic N (DIN) concentrations showed no temporal trend. With greater salinity, mean DIN:DIP decreased from above the Redfield ratio of 16 to below it, reflecting DIN losses and the more conservative behavior of DIP with salinity. Over the same time period, annual mean P (total dissolved P, DIP, dissolved organic P) loading from the MAR to the NGoM significantly increased, annual mean DIN and total dissolved N loading showed no temporal trend, and dissolved organic N loading significantly decreased. Though DIP increased in the MAR, MAR DIP alone was insufficient to explain the surface distribution of DIP with salinity. Therefore, increases in surface DIP in the NGoM are not simply a reflection of increasing MAR DIP, pointing to temporal changes in other DIP sources. The increase in NGoM DIP suggests greater N limitation for phytoplankton, with implications for N fixation and nutrient management.more » « less
-
Concentrations of inorganic dissolved macronutrients, including phosphate, nitrate plus nitrite (N+N), silicic acid, and nitrite, from phytoplankton shipboard incubation experiments and depth profiles collected on STING I cruise AE2305 on R/V Atlantic Explorer in the Gulf of Mexico from February to March 2023. This project investigates how groundwater discharge delivers important nutrients to the coastal ecosystems of the West Florida Shelf. Preliminary studies indicate that groundwater may supply both dissolved organic nitrogen (DON) and iron in this region. In coastal ecosystems like the West Florida Shelf that have very low nitrate and ammonium concentrations, DON is the main form of nitrogen available to organisms. Nitrogen cycling is strongly affected by iron availability because iron is essential for both photosynthesis and for nitrogen fixation. This study will investigate the sources and composition of DON and iron, and their influence on the coastal ecosystem. The team will sample offshore groundwater wells, river and estuarine waters, and conduct two expeditions across the West Florida Shelf in winter and summer.more » « less
An official website of the United States government

