skip to main content


Title: Quantile Regression Analysis of Censored Longitudinal Data with Irregular Outcome-Dependent Follow-Up
Summary

In many observational longitudinal studies, the outcome of interest presents a skewed distribution, is subject to censoring due to detection limit or other reasons, and is observed at irregular times that may follow a outcome-dependent pattern. In this work, we consider quantile regression modeling of such longitudinal data, because quantile regression is generally robust in handling skewed and censored outcomes and is flexible to accommodate dynamic covariate-outcome relationships. Specifically, we study a longitudinal quantile regression model that specifies covariate effects on the marginal quantiles of the longitudinal outcome. Such a model is easy to interpret and can accommodate dynamic outcome profile changes over time. We propose estimation and inference procedures that can appropriately account for censoring and irregular outcome-dependent follow-up. Our proposals can be readily implemented based on existing software for quantile regression. We establish the asymptotic properties of the proposed estimator, including uniform consistency and weak convergence. Extensive simulations suggest good finite-sample performance of the new method. We also present an analysis of data from a long-term study of a population exposed to polybrominated biphenyls (PBB), which uncovers an inhomogeneous PBB elimination pattern that would not be detected by traditional longitudinal data analysis.

 
more » « less
NSF-PAR ID:
10485126
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
72
Issue:
1
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 64-73
Size(s):
["p. 64-73"]
Sponsoring Org:
National Science Foundation
More Like this
  1. When analyzing bivariate outcome data, it is often of scientific interest to measure and estimate the association between the bivariate outcomes. In the presence of influential covariates for one or both of the outcomes, conditional association measures can quantify the strength of association without the disturbance of the marginal covariate effects, to provide cleaner and less‐confounded insights into the bivariate association. In this work, we propose estimation and inferential procedures for assessing the conditional Kendall's tau coefficient given the covariates, by adopting the quantile regression and quantile copula framework to handle marginal covariate effects. The proposed method can flexibly accommodate right censoring and be readily applied to bivariate survival data. It also facilitates an estimator of the conditional concordance measure, namely, a conditionalindex, where the unconditionalindex is commonly used to assess the predictive capacity for survival outcomes. The proposed method is flexible and robust and can be easily implemented using standard software. The method performed satisfactorily in extensive simulation studies with and without censoring. Application of our methods to two real‐life data examples demonstrates their desirable practical utility.

     
    more » « less
  2. Abstract

    With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.

     
    more » « less
  3. Abstract

    We consider a regression analysis of longitudinal data in the presence of outcome‐dependent observation times and informative censoring. Existing approaches commonly require a correct specification of the joint distribution of longitudinal measurements, the observation time process, and informative censoring time under the joint modeling framework and can be computationally cumbersome due to the complex form of the likelihood function. In view of these issues, we propose a semiparametric joint regression model and construct a composite likelihood function based on a conditional order statistics argument. As a major feature of our proposed methods, the aforementioned joint distribution is not required to be specified, and the random effect in the proposed joint model is treated as a nuisance parameter. Consequently, the derived composite likelihood bypasses the need to integrate over the random effect and offers the advantage of easy computation. We show that the resulting estimators are consistent and asymptotically normal. We use simulation studies to evaluate the finite‐sample performance of the proposed method and apply it to a study of weight loss data that motivated our investigation.

     
    more » « less
  4. Summary

    Analysing secondary outcomes is a common practice for case–control studies. Traditional secondary analysis employs either completely parametric models or conditional mean regression models to link the secondary outcome to covariates. In many situations, quantile regression models complement mean-based analyses and provide alternative new insights on the associations of interest. For example, biomedical outcomes are often highly asymmetric, and median regression is more useful in describing the ‘central’ behaviour than mean regressions. There are also cases where the research interest is to study the high or low quantiles of a population, as they are more likely to be at risk. We approach the secondary quantile regression problem from a semiparametric perspective, allowing the covariate distribution to be completely unspecified. We derive a class of consistent semiparametric estimators and identify the efficient member. The asymptotic properties of the resulting estimators are established. Simulation results and a real data analysis are provided to demonstrate the superior performance of our approach with a comparison with the only existing approach so far in the literature.

     
    more » « less
  5. Summary

    This paper introduces an assumption-lean method that constructs valid and efficient lower predictive bounds for survival times with censored data. We build on recent work by Candès et al. (2023), whose approach first subsets the data to discard any data points with early censoring times and then uses a reweighting technique, namely, weighted conformal inference (Tibshirani et al., 2019), to correct for the distribution shift introduced by this subsetting procedure. For our new method, instead of constraining to a fixed threshold for the censoring time when subsetting the data, we allow for a covariate-dependent and data-adaptive subsetting step, which is better able to capture the heterogeneity of the censoring mechanism. As a result, our method can lead to lower predictive bounds that are less conservative and give more accurate information. We show that in the Type-I right-censoring setting, if either the censoring mechanism or the conditional quantile of the survival time is well estimated, our proposed procedure achieves nearly exact marginal coverage, where in the latter case we additionally have approximate conditional coverage. We evaluate the validity and efficiency of our proposed algorithm in numerical experiments, illustrating its advantage when compared with other competing methods. Finally, our method is applied to a real dataset to generate lower predictive bounds for users’ active times on a mobile app.

     
    more » « less