skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accurately Determining Groundwater Sulfate Concentrations from Reclaimed Landscapes with Conductometric Titrations
Conductometric titrations were used to measure sulfate concentrations in ground and surface water samples taken from land reclaimed after open-air coal mining. Sulfate concentrations ranged from 460 mg/L in surface water upstream of the former coal mine’s location to almost 3500 mg/L in groundwater sampled at the spoil site. Data from the titration measurements were benchmarked against EPA-approved ion chromatography (IC) measurements and results agreed to within ±3.6% (averaged over 36 samples) with a range of +10.4 and −11.3%. To test the generality of conductometric titration as a method for measuring dissolved constituents in environmental aquatic systems, additional measurements testing for chloride were performed with surface water samples collected from four different sites in south central and southwest Montana. Chloride concentrations ranged from 2.2 to 12 ppm. Based on measurements with control samples prepared in the laboratory, the environmental sample measurements are believed to be accurate to within ±6.4%. These conductometric titration studies highlight the technique’s simplicity, accuracy, cost effectiveness, and potential to produce rapid results. Additional analyses suggest that even simpler, non-species-specific conductivity data can provide an on-site, rapid assessment of sulfate levels in ground and surface water when historical speciation data are available.  more » « less
Award ID(s):
1757351
PAR ID:
10485192
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
ACS ES&T Water
Edition / Version:
1
Volume:
3
Issue:
8
ISSN:
2690-0637
Page Range / eLocation ID:
2544 to 2550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lake water chemistry was measured for lakes in Iceland. We used a multiparameter probe (HydroLab HL4, OTT HydroMet) to measure in situ temperature, pH, dissolved oxygen (DO), and electrical conductivity of the water column at 0.5-1 m resolution. These measurements were repeated during each field campaign, resulting in multiple years of summer water chemistry data for many lakes. For some lakes, profiles of the water column were additionally taken through the ice during a February field campaign. Additionally, 0.5-1L grab samples of surface and bottom waters were analyzed for Total Phosphorus (mg/L), Chloride (mg/L), Nitrate (mg/L), Sulfate (mg/L), TOC/DOC (mg/L), and Total Nitrogen (mg/L). 
    more » « less
  2. The increasing prevalence of hazardous chemical incidents in the United States necessitates the implementation of analytically robust, rapid, and reliable screening techniques for toxicant mixture analysis to understand short- and long-term health impacts of environmental exposures. A recent chemical disaster in East Palestine, Ohio has underscored the importance of thorough contamination assessment. On February 03, 2023, a Norfolk Southern train derailment prompted a chemical spill and fires. An open burn involving over 100,000 gal of vinyl chloride was conducted three days later. Hazardous compounds were released into air, water, and soil. To provide time-sensitive exposure data for emergency response, this study outlines a novel methodology for rapid characterization of chemical contamination of environmental media to support disaster response efforts. A controlled static headspace sampling system, in conjunction with a high-resolution proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS), was developed to characterize volatile organic compounds (VOCs) in surface water samples collected near the East Palestine train derailment site. Spatial variations were observed in the chemical composition of surface water samples collected at different locations. Hydrocarbons were found to be the most abundant chemical group of all surface water samples, contributing 50 % to 97 % to the total headspace VOC mass. Compounds commonly detected in surface water samples, including benzene, styrene, xylene, and methyl tert-butyl ether (MTBE) were also observed in most surface water samples, with aqueous concentrations typically at ng/L levels. This study demonstrated the potential of the proposed methodology to be applied for rapid field screening of volatile chemicals in water samples in order to enable fast emergency response to chemical disasters and environmental hazards. 
    more » « less
  3. The radon isotope and stable water isotope data for Coal Creek Watershed, Colorado, consists of d2H, d18O, and 222Rn values from samples collected at 8 stream location along Coal Creek, samples from 7 groundwater springs within the watershed, and precipitation isotope samples collected by Next Generation Water Observing System (NGWOS) from a collector within the watershed. All stream and spring samples were collected between June and October, 2021, and precipitation isotope samples were collected between November 2020 and September 2021. These data were collected to evaluate how groundwater contributions to Coal Creek originating from a fractured hillslope and alluvial fan respond to summer monsoon rains and seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all radon samples; (2) a csv of all stream and spring isotope samples; (3) a csv of precipitation isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type. 
    more » « less
  4. Abstract. The recently discovered cryptic methane cycle in the sulfate-reducing zone of marine and wetland sediment couples methylotrophic methanogenesis to anaerobic oxidation of methane (AOM). Here we present evidence of cryptic methane cycling activity within the upper regions of the sulfate-reducing zone, along a depth transect within the Santa Barbara Basin, off the coast of California, USA. The top 0–20 cm of sediment from each station was subjected to geochemical analyses and radiotracer incubations using 35S–SO42-, 14C–mono-methylamine, and 14C–CH4 to find evidence of cryptic methane cycling. Methane concentrations were consistently low (3 to 16 µM) across the depth transect, despite AOM rates increasing with decreasing water depth (from max 0.05 nmol cm−3 d−1 at the deepest station to max 1.8 nmol cm−3 d−1 at the shallowest station). Porewater sulfate concentrations remained high (23 to 29 mM), despite the detection of sulfate reduction activity from 35S–SO42- incubations with rates up to 134 nmol cm−3 d−1. Metabolomic analysis showed that substrates for methanogenesis (i.e., acetate, methanol and methylamines) were mostly below the detection limit in the porewater, but some samples from the 1–2 cm depth section showed non-quantifiable evidence of these substrates, indicating their rapid turnover. Estimated methanogenesis from mono-methylamine ranged from 0.2 to 0.5 nmol cm−3 d−1. Discrepancies between the rate constants (k) of methanogenesis (from 14C–mono-methylamine) and AOM (from either 14C–mono-methylamine-derived 14C–CH4 or from directly injected 14C–CH4) suggest the activity of a separate, concurrent metabolic process directly metabolizing mono-methylamine to inorganic carbon. We conclude that the results presented in this work show strong evidence of cryptic methane cycling occurring within the top 20 cm of sediment in the Santa Barbara Basin. The rapid cycling of carbon between methanogenesis and methanotropy likely prevents major build-up of methane in the sulfate-reducing zone. Furthermore, our data suggest that methylamine is utilized by both methanogenic archaea capable of methylotrophic methanogenesis and non-methanogenic microbial groups. We hypothesize that sulfate reduction is responsible for the additional methylamine turnover, but further investigation is needed to elucidate this metabolic activity. 
    more » « less
  5. Extensive building closures due to the unprecedented COVID-19 pandemic resulted in long-term water stagnation within the plumbing of large buildings. This study examined water chemical quality deterioration in ten large buildings after prolonged stagnation caused by the closure of a university campus in response to the COVID-19 pandemic. Volume-based and constant-duration flushing protocols were implemented to replace stagnant water with fresh drinking water. The effectiveness of the developed water flushing protocols was examined by monitoring the disinfectant residuals, heavy metal concentrations and temperature for water samples collected from the buildings' point of entry (POE) and select water fixtures. More than 14 m 3 of water were flushed in all ten large buildings. The results demonstrated a significantly greater average total chlorine residual concentration in POE water samples collected after flushing (1.1 mg L −1 ) compared to the stagnant condition (0.6 mg L −1 ). For water samples collected from fixtures during the extended stagnation, chlorine was absent in 71% of samples from academic buildings and 69% of samples from athletic buildings. The effectiveness of flushing practices is underscored by increasing the median total chlorine concentration from <0.1 to 1.0 mg L −1 in academic buildings and from <0.1 to 0.75 mg L −1 in athletic buildings. Furthermore, the concentrations of Pb, Zn, and Cu had decreased following the water flushing, but the concentration of Fe had increased in some buildings. This study could be beneficial to prepare for prolonged water stagnation events including but not limited to pandemics. 
    more » « less