The infraorder Mygalomorphae is one of the three main lineages of spiders comprising over 3000 nominal species. This ancient group has a worldwide distribution that includes among its ranks large and charismatic taxa such as tarantulas, trapdoor spiders, and highly venomous funnel-web spiders. Based on past molecular studies using Sanger-sequencing approaches, numerous mygalomorph families (e.g., Hexathelidae, Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae) have been identified as non-monophyletic. However, these data were unable to sufficiently resolve the higher-level (intra- and interfamilial) relationships such that the necessary changes in classification could be made with confidence. Here, we present a comprehensive phylogenomic treatment of the spider infraorder Mygalomorphae. We employ 472 loci obtained through anchored hybrid enrichment to reconstruct relationships among all the mygalomorph spider families and estimate the timeframe of their diversification. We sampled nearly all currently recognized families, which has allowed us to assess their status, and as a result, propose a new classification scheme. Our generic-level sampling has also provided an evolutionary framework for revisiting questions regarding silk use in mygalomorph spiders. The first such analysis for the group within a strict phylogenetic framework shows that a sheet web is likely the plesiomorphic condition for mygalomorphs, as well as providing insights to the ancestral foraging behavior for all spiders. Our divergence time estimates, concomitant with detailed biogeographic analysis, suggest that both ancient continental-level vicariance and more recent dispersal events have played an important role in shaping modern day distributional patterns. Based on our results, we relimit the generic composition of the Ctenizidae, Cyrtaucheniidae, Dipluridae, and Nemesiidae. We also elevate five subfamilies to family rank: Anamidae (NEW RANK), Euagridae (NEW RANK), Ischnothelidae (NEW RANK), Pycnothelidae (NEW RANK), and Bemmeridae (NEW RANK). Three families Entypesidae (NEW FAMILY), Microhexuridae (NEW FAMILY), and Stasimopidae (NEW FAMILY), and one subfamily Australothelinae (NEW SUBFAMILY) are newly proposed. Such a major rearrangement in classification, recognizing nine newly established family-level rank taxa, is the largest the group has seen in over three decades. [Biogeography; molecular clocks; phylogenomics; spider web foraging; taxonomy.]
This content will become publicly available on February 1, 2025
- Award ID(s):
- 2016141
- NSF-PAR ID:
- 10485206
- Publisher / Repository:
- Molecular Phylogenetics and Evolution
- Date Published:
- Journal Name:
- Molecular Phylogenetics and Evolution
- Volume:
- 191
- Issue:
- C
- ISSN:
- 1055-7903
- Page Range / eLocation ID:
- 107989
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Leptonetidae are rarely encountered spiders, usually associated with caves and mesic habitats, and are disjunctly distributed across the Holarctic. Data from ultraconserved elements (UCEs) were used in concatenated and coalescent-based analyses to estimate the phylogenetic history of the family. Our taxon sample included close outgroups, and 90% of described leptonetid genera, with denser sampling in North America and Mediterranean Europe. Two data matrices were assembled and analysed; the first ‘relaxed’ matrix includes the maximum number of loci and the second ‘strict’ matrix is limited to the same set of core orthologs but with flanking introns mostly removed. A molecular dating analysis incorporating fossil and geological calibration points was used to estimate divergence times, and dispersal–extinction–cladogenesis analysis (DEC) was used to infer ancestral distributions. Analysis of both data matrices using maximum likelihood and coalescent-based methods supports the monophyly of Archoleptonetinae and Leptonetinae. However, relationships among Archoleptonetinae, Leptonetinae, and Austrochiloidea are poorly supported and remain unresolved. Archoleptonetinae is elevated to family rank Archoleptonetidae (new rank) and Leptonetidae (new status) is restricted to include only members of the subfamily Leptonetinae; a taxonomic review with morphological diagnoses is provided for both families. Four well supported lineages within Leptonetidae (new status) are recovered: (1) the Calileptoneta group, (2) the Leptoneta group, (3) the Paraleptoneta group, and (4) the Protoleptoneta group. Most genera within Leptonetidae are monophyletic, although Barusia, Cataleptoneta, and Leptoneta include misplaced species and require taxonomic revision. The origin of Archoleptonetidae (new rank), Leptonetidae, and the four main lineages within Leptonetidae date to the Cretaceous. DEC analysis infers the Leptoneta and Paraleptoneta groups to have ancestral distributions restricted to Mediterranean Europe, whereas the Calileptoneta and Protoleptoneta groups include genera with ancestral distributions spanning eastern and western North America, Mediterranean Europe, and east Asia. Based on a combination of biology, estimated divergence times, and inferred ancestral distributions we hypothesise that Leptonetidae was once widespread across the Holarctic and their present distributions are largely the result of vicariance. Given the wide disjunctions between taxa, we broadly interpret the family as a Holarctic relict fauna and hypothesise that they were once part of the Boreotropical forest ecosystem.more » « less
-
Abstract Scorpions are ancient and historically renowned for their potent venom. Traditionally, the systematics of this group of arthropods was supported by morphological characters, until recent phylogenomic analyses (using RNAseq data) revealed most of the higher‐level taxa to be non‐monophyletic. While these phylogenomic hypotheses are stable for almost all lineages, some nodes have been hard to resolve due to minimal taxonomic sampling (e.g. family Chactidae). In the same line, it has been shown that some nodes in the Arachnid Tree of Life show disagreement between hypotheses generated using transcritptomes and other genomic sources such as the ultraconserved elements (UCEs). Here, we compared the phylogenetic signal of transcriptomes vs. UCEs by retrieving UCEs from new and previously published scorpion transcriptomes and genomes, and reconstructed phylogenies using both datasets independently. We reexamined the monophyly and phylogenetic placement of Chactidae, sampling an additional chactid species using both datasets. Our results showed that both sets of genome‐scale datasets recovered highly similar topologies, with Chactidae rendered paraphyletic owing to the placement of
Nullibrotheas allenii . As a first step toward redressing the systematics of Chactidae, we establish the family Anuroctonidae (new family) to accommodate the genusAnuroctonus . -
Portunoidea is a diverse lineage of ecologically and economically important marine crabs comprising 8 families and 14 subfamilies. Closely related portunid subfamilies Caphyrinae and Thalamitinae constitute some of this group’s greatest morphological and taxonomic diversity, and are the only known lineages to include symbiotic taxa. Emergence of symbiosis in decapods remains poorly studied and portunoid crabs provide an interesting, but often overlooked example. Yet the paucity of molecular phylogenetic data available for Portunoidea makes it challenging to investigate the evolution and systematics of the group. Phylogenetic analyses, though limited, suggest that many putative portunoid taxa are para- or polyphyletic. Here I augment existing molecular data—significantly increasing taxon sampling of Caphyrinae, Thalamitinae, and several disparate portunoid lineages—to investigate the phylogenetic origin of symbiosis within Portunoidea and reevaluate higher- and lower-level portunoid classifications. Phylogenetic analyses were carried out on sequences of H3, 28S rRNA, 16S rRNA, and CO1 for up to 168 portunoid taxa; this included, for the first time, molecular data from the genera Atoportunus , Brusinia , Caphyra , Coelocarcinus , Gonioinfradens , Raymanninus , and Thalamonyx . Results support the placement of all symbiotic taxa ( Caphyra , Lissocarcinus , and two Thalamita ) in a single clade derived within the thalamitine genus Thalamita . Caphyrina Paulson, 1875, nom. trans. is recognized here as a subtribe within the subfamily Thalamitinae. Results also support the following taxonomic actions: Cronius is reclassified as a thalamitine genus; Thalamonyx is reestablished as a valid genus; Goniosupradens is raised to the generic rank; and three new genera ( Zygita gen. nov., Thranita gen. nov., and Trierarchus gen. nov.) are described to accommodate some Thalamita s.l. taxa rendered paraphyletic by Caphyrina. A new diagnosis of Thalamitinae is provided. Results also support a more conservative classification of Portunoidea comprising three instead of eight extant families: Geryonidae (Geryonidae + Ovalipidae; new diagnosis provided), Carcinidae (Carcinidae + Pirimelidae + Polybiidae + Thiidae + Coelocarcinus ; new diagnosis provided) and Portunidae. Finally, 16s rRNA data suggests family Brusiniidae might not be a portunoid lineage.more » « less
-
During surveys in central Florida of the zombie-ant fungus Ophiocordyceps camponoti-floridani , which manipulates the behavior of the carpenter ant Camponotus floridanus , two distinct fungal morphotypes were discovered associated with and purportedly parasitic on O. camponoti-floridani . Based on a combination of unique morphology, ecology and phylogenetic placement, we discovered that these morphotypes comprise two novel lineages of fungi. Here, we propose two new genera, Niveomyces and Torrubiellomyces , each including a single species within the families Cordycipitaceae and Ophiocordycipitaceae , respectively. We generated de novo draft genomes for both new species and performed morphological and multi-loci phylogenetic analyses. The macro-morphology and incidence of both new species, Niveomyces coronatus and Torrubiellomyces zombiae , suggest that these fungi are mycoparasites since their growth is observed exclusively on O. camponoti-floridani mycelium, stalks and ascomata, causing evident degradation of their fungal hosts. This work provides a starting point for more studies into fungal interactions between mycopathogens and entomopathogens, which have the potential to contribute towards efforts to battle the global rise of plant and animal mycoses.more » « less