skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2016141

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundThe comparative embryology of Chelicerata has greatly advanced in recent years with the integration of classical studies and genetics, prominently spearheaded by developmental genetic works in spiders. Nonetheless, the understanding of the evolution of development and polarization of embryological characters in Chelicerata is presently limited, as few non-spider species have been well studied. A promising focal species for chelicerate evo-devo is the daddy-long-legs (harvestman)Phalangium opilio, a member of the order Opiliones.Phalangium opilio, breeds prolifically and is easily accessible in many parts of the world, as well as tractable in a laboratory setting. Resources for this species include developmental transcriptomes, a draft genome, and protocols for RNA interference, but a modern staging system is critically missing for this emerging model system. ResultsWe present a staging system ofP. opilioembryogenesis that spans the most important morphogenetic events with respect to segment formation, appendage elongation and head development. Using time-lapse imaging, confocal microscopy, colorimetric in situ hybridization, and immunohistochemistry, we tracked the development of synchronous clutches from egg laying to adulthood. We describe key events in segmentation, myogenesis, neurogenesis, and germ cell formation. ConclusionConsidering the phylogenetic position of Opiliones and the unduplicated condition of its genome (in contrast to groups like spiders and scorpions), this species is poised to serve as a linchpin for comparative studies in arthropod development and genome evolution. The staging system presented herein provides a valuable reference forP.opiliothat we anticipate being useful to the arthropod evo-devo community, with the goal of revitalizing research in the comparative development of non-spider arachnids. 
    more » « less
  2. Abstract Recent advances in higher‐level invertebrate phylogeny have leveraged shared features of genomic architecture to resolve contentious nodes across the tree of life. Yet, the interordinal relationships within Chelicerata have remained recalcitrant given competing topologies in recent molecular analyses. As such, relationships between topologically unstable orders remain supported primarily by morphological cladistic analyses. Solifugae, one such unstable chelicerate order, has long been thought to be the sister group of Pseudoscorpiones, forming the clade Haplocnemata, on the basis of eight putative morphological synapomorphies. The discovery, however, of a shared whole genome duplication placing Pseudoscorpiones in Arachnopulmonata provides the opportunity for a simple litmus test evaluating the validity of Haplocnemata. Here, we present the first developmental transcriptome of a solifuge (Titanopuga salinarum) and survey copy numbers of the homeobox genes for evidence of systemic duplication. We find that over 70% of the identified homeobox genes inT. salinarumare retained in a single copy, while representatives of the arachnopulmonates retain orthologs of those genes as two or more copies. Our results refute the placement of Solifugae in Haplocnemata. Subsequent reevaluation of putative interordinal morphological synapomorphies among chelicerates reveals a high incidence of homoplasy, reversals, and inaccurate coding within Haplocnemata and other small clades, as well as Arachnida more broadly, suggesting existing morphological character matrices are insufficient to resolve chelicerate phylogeny. 
    more » « less
  3. Abstract Scorpions are ancient and historically renowned for their potent venom. Traditionally, the systematics of this group of arthropods was supported by morphological characters, until recent phylogenomic analyses (using RNAseq data) revealed most of the higher‐level taxa to be non‐monophyletic. While these phylogenomic hypotheses are stable for almost all lineages, some nodes have been hard to resolve due to minimal taxonomic sampling (e.g. family Chactidae). In the same line, it has been shown that some nodes in the Arachnid Tree of Life show disagreement between hypotheses generated using transcritptomes and other genomic sources such as the ultraconserved elements (UCEs). Here, we compared the phylogenetic signal of transcriptomes vs. UCEs by retrieving UCEs from new and previously published scorpion transcriptomes and genomes, and reconstructed phylogenies using both datasets independently. We reexamined the monophyly and phylogenetic placement of Chactidae, sampling an additional chactid species using both datasets. Our results showed that both sets of genome‐scale datasets recovered highly similar topologies, with Chactidae rendered paraphyletic owing to the placement ofNullibrotheas allenii. As a first step toward redressing the systematics of Chactidae, we establish the family Anuroctonidae (new family) to accommodate the genusAnuroctonus. 
    more » « less
  4. Synopsis The proliferation of genomic resources for Chelicerata in the past 10 years has revealed that the evolution of chelicerate genomes is more dynamic than previously thought, with multiple waves of ancient whole genome duplications affecting separate lineages. Such duplication events are fascinating from the perspective of evolutionary history because the burst of new gene copies associated with genome duplications facilitates the acquisition of new gene functions (neofunctionalization), which may in turn lead to morphological novelties and spur net diversification. While neofunctionalization has been invoked in several contexts with respect to the success and diversity of spiders, the overall impact of whole genome duplications on chelicerate evolution and development remains imperfectly understood. The purpose of this review is to examine critically the role of whole genome duplication on the diversification of the extant arachnid orders, as well as assess functional datasets for evidence of subfunctionalization or neofunctionalization in chelicerates. This examination focuses on functional data from two focal model taxa: the spider Parasteatoda tepidariorum, which exhibits evidence for an ancient duplication, and the harvestman Phalangium opilio, which exhibits an unduplicated genome. I show that there is no evidence that taxa with genome duplications are more successful than taxa with unduplicated genomes. I contend that evidence for sub- or neofunctionalization of duplicated developmental patterning genes in spiders is indirect or fragmentary at present, despite the appeal of this postulate for explaining the success of groups like spiders. Available expression data suggest that the condition of duplicated Hox modules may have played a role in promoting body plan disparity in the posterior tagma of some orders, such as spiders and scorpions, but functional data substantiating this postulate are critically missing. Spatiotemporal dynamics of duplicated transcription factors in spiders may represent cases of developmental system drift, rather than neofunctionalization. Developmental system drift may represent an important, but overlooked, null hypothesis for studies of paralogs in chelicerate developmental biology. To distinguish between subfunctionalization, neofunctionalization, and developmental system drift, concomitant establishment of comparative functional datasets from taxa exhibiting the genome duplication, as well as those that lack the paralogy, is sorely needed. 
    more » « less
  5. Within the arachnids, chromosome-level genome assemblies have greatly accelerated the understanding of gene family evolution and developmental genomics in key groups, such as spiders (Araneae), mites and ticks (Acariformes and Parasitiformes). Among other poorly studied arachnid orders that lack genome assemblies altogether are the clade Pedipalpi, which is comprised of three orders that form the sister group of spiders, which diverged over 400 Mya. We close this gap by generating the first chromosome-level assembly from a single specimen of the vinegaroon Mastigoproctus giganteus (Uropygi). We show that this highly complete genome retains plesiomorphic conditions for many gene families that have undergone lineage-specific derivations within the more diverse spiders. Consistent with the phylogenetic position of Uropygi, macrosynteny in the M. giganteus genome substantiates the signature of an ancient whole genome duplication. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025
  6. Chelicerata constitutes an ancient, biodiverse, and ecologically significant group of Arthropoda. The study of chelicerate evolution has undergone a renaissance in the past decade, resulting in major changes to our understanding of the higher-level phylogeny and internal relationships of living orders. Included among these conceptual advances are the discoveries of multiple whole-genome duplication events in a subset of chelicerate orders, such as horseshoe crabs, spiders, and scorpions. As a result, longstanding hypotheses and textbook scenarios of chelicerate evolution, such as the monophyly of Arachnida and a single colonization of land by the common ancestor of arachnids, have come into contention. The retention of ancient, duplicated genes across this lineage also offers fertile ground for investigating the role of gene duplication in chelicerate macroevolution. This new frontier of investigation is paralleled by the timely establishment of the first gene editing protocols for arachnid models, facilitating a new generation of experimental approaches. 
    more » « less
  7. True, John (Ed.)
    Neofunctionalization of duplicated gene copies is thought to be an important process underlying the origin of evolutionary novelty and provides an elegant mechanism for the origin of new phenotypic traits. One putative case where a new gene copy has been linked to a novel morphological trait is the origin of the arachnid patella, a taxonomically restricted leg segment. In spiders, the origin of this segment has been linked to the origin of the paralog dachshund-2, suggesting that a new gene facilitated the expression of a new trait. However, various arachnid groups that possess patellae do not have a copy of dachshund-2, disfavoring the direct link between gene origin and trait origin. We investigated the developmental genetic basis for patellar patterning in the harvestman Phalangium opilio, which lacks dachshund-2. Here, we show that the harvestman patella is established by a novel expression domain of the transcription factor extradenticle. Leveraging this definition of patellar identity, we surveyed targeted groups across chelicerate phylogeny to assess when this trait evolved. We show that a patellar homolog is present in Pycnogonida (sea spiders) and various arachnid orders, suggesting a single origin of the patella in the ancestor of Chelicerata. A potential loss of the patella is observed in Ixodida. Our results suggest that the modification of an ancient gene, rather than the neofunctionalization of a new gene copy, underlies the origin of the patella. Broadly, this work underscores the value of comparative data and broad taxonomic sampling when testing hypotheses in evolutionary developmental biology. 
    more » « less
  8. Su, Yi-Hsien (Ed.)
    The chelicerate body plan is distinguished from other arthropod groups by its division of segments into 2 tagmata: the anterior prosoma (“cephalothorax”) and the posterior opisthosoma (“abdomen”). Little is understood about the genetic mechanisms that establish the prosomal-opisthosomal (PO) boundary. To discover these mechanisms, we created high-quality genomic resources for the large-bodied spider Aphonopelma hentzi. We sequenced specific territories along the antero-posterior axis of developing embryos and applied differential gene expression analyses to identify putative regulators of regional identity. After bioinformatic screening for candidate genes that were consistently highly expressed in only 1 tagma (either the prosoma or the opisthosoma), we validated the function of highly ranked candidates in the tractable spider modelParasteatoda tepidariorum. Here, we show that an arthropod homolog of the Iroquois complex of homeobox genes is required for proper formation of the boundary between arachnid tagmata. The function of this homolog had not been previously characterized, because it was lost in the common ancestor of Pancrustacea, precluding its investigation in well-studied insect model organisms. Knockdown of the spider copy of this gene, which we designate aswaist-less, inP.tepidariorumresulted in embryos with defects in the PO boundary, incurring discontinuous spider germ bands. We show thatwaist-lessis required for proper specification of the segments that span the prosoma-opisthosoma boundary, which in adult spiders corresponds to the narrowed pedicel. Our results demonstrate the requirement of an ancient, taxon-restricted paralog for the establishment of the tagmatic boundary that defines Chelicerata. 
    more » « less
  9. Dayrat, Benoit (Ed.)
    Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or “living fossils” when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi (“whip spiders”), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous “whips”). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of “dark taxa,” and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy. 
    more » « less