skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Almost all wreath product character values are divisible by given primes
For a finite group G with integer-valued character table and a prime p, we show that almost every entry in the character table of G (wreath) S_N is divisible by p as N approaches infinity. This result generalizes the work of Peluse and Soundararajan on the character table of S_N. .  more » « less
Award ID(s):
2149647
PAR ID:
10485247
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Centre Mersenne and TCC Publishing
Date Published:
Journal Name:
Algebraic Combinatorics
Volume:
6
Issue:
6
ISSN:
2589-5486
Page Range / eLocation ID:
1519 to 1531
Format(s):
Medium: X Other: .pdf, .tex
Sponsoring Org:
National Science Foundation
More Like this
  1. abstract: We prove a formula, conjectured by Zagier, for the $$S_n$$-equivariant Euler characteristic of the top weight cohomology of $$\scr{M}_{g,n}$$. 
    more » « less
  2. Let $$\Gamma$$ be a finite group acting transitively on $$[n]=\{1,2,\ldots,n\}$$, and let $$G=\mathrm{Cay}(\Gamma,T)$$ be a Cayley graph of $$\Gamma$$. The graph $$G$$ is called normal if $$T$$ is closed under conjugation. In this paper, we obtain an upper bound for \textcolor[rgb]{0,0,1}{the second (largest) eigenvalue} of the adjacency matrix of the graph $$G$$ in terms of the second eigenvalues of certain subgraphs of $$G$$ (see Theorem 2.6). Using this result, we develop a recursive method to determine the second eigenvalues of certain Cayley graphs of $$S_n$$ and we determine the second eigenvalues of a majority of the connected normal Cayley graphs (and some of their subgraphs) of $$S_n$$ with $$\max_{\tau\in T}|\mathrm{supp}(\tau)|\leq 5$$, where $$\mathrm{supp}(\tau)$$ is the set of points in $[n]$ non-fixed by $$\tau$$. 
    more » « less
  3. Let $$\Gamma$$ be a finite group acting transitively on $$[n]=\{1,2,\ldots,n\}$$, and let $$G=\mathrm{Cay}(\Gamma,T)$$ be a Cayley graph of $$\Gamma$$. The graph $$G$$ is called normal if $$T$$ is closed under conjugation. In this paper, we obtain an upper bound for \textcolor[rgb]{0,0,1}{the second (largest) eigenvalue} of the adjacency matrix of the graph $$G$$ in terms of the second eigenvalues of certain subgraphs of $$G$$ (see Theorem 2.6). Using this result, we develop a recursive method to determine the second eigenvalues of certain Cayley graphs of $$S_n$$ and we determine the second eigenvalues of a majority of the connected normal Cayley graphs (and some of their subgraphs) of $$S_n$$ with $$\max_{\tau\in T}|\mathrm{supp}(\tau)|\leq 5$$, where $$\mathrm{supp}(\tau)$$ is the set of points in $[n]$ non-fixed by $$\tau$$. 
    more » « less
  4. Abstract Let G be a finite group. Let $H, K$ be subgroups of G and $$H \backslash G / K$$ the double coset space. If Q is a probability on G which is constant on conjugacy classes ( $$Q(s^{-1} t s) = Q(t)$$ ), then the random walk driven by Q on G projects to a Markov chain on $$H \backslash G /K$$ . This allows analysis of the lumped chain using the representation theory of G . Examples include coagulation-fragmentation processes and natural Markov chains on contingency tables. Our main example projects the random transvections walk on $$GL_n(q)$$ onto a Markov chain on $$S_n$$ via the Bruhat decomposition. The chain on $$S_n$$ has a Mallows stationary distribution and interesting mixing time behavior. The projection illuminates the combinatorics of Gaussian elimination. Along the way, we give a representation of the sum of transvections in the Hecke algebra of double cosets, which describes the Markov chain as a mixture of Metropolis chains. Some extensions and examples of double coset Markov chains with G a compact group are discussed. 
    more » « less
  5. Let $$G$$ be a finite group acting transitively on $$[n]=\{1,2,\ldots,n\}$$, and  let $$\Gamma=\mathrm{Cay}(G,T)$$ be a Cayley graph of $$G$$. The graph $$\Gamma$$ is called  normal if $$T$$ is closed under conjugation. In this paper, we obtain an upper bound for the second (largest) eigenvalue of the adjacency matrix of the graph $$\Gamma$$ in terms of the second eigenvalues of certain subgraphs of $$\Gamma$$. Using this result, we develop a recursive method to  determine the second eigenvalues of certain  Cayley graphs of $$S_n$$, and we determine the second eigenvalues  of a majority of the connected normal Cayley graphs (and some of their subgraphs) of $$S_n$$  with  $$\max_{\tau\in T}|\mathrm{supp}(\tau)|\leqslant 5$$, where $$\mathrm{supp}(\tau)$$ is the set of points in $[n]$ non-fixed by $$\tau$$. 
    more » « less