skip to main content


Title: E-detectors: A Nonparametric Framework for Sequential Change Detection

Sequential change detection is a classical problem with a variety of applications. However, the majority of prior work has been parametric, for example, focusing on exponential families. We develop a fundamentally new and general framework for sequential change detection when the pre- and post-change distributions are nonparametrically specified (and thus composite). Our procedures come with clean, nonasymptotic bounds on the average run length (frequency of false alarms). In certain nonparametric cases (like sub-Gaussian or sub-exponential), we also provide near-optimal bounds on the detection delay following a changepoint. The primary technical tool that we introduce is called an e-detector, which is composed of sums of e-processes—a fundamental generalization of nonnegative supermartingales—that are started at consecutive times. We first introduce simple Shiryaev-Roberts and CUSUM-style e-detectors, and then show how to design their mixtures in order to achieve both statistical and computational efficiency. Our e-detector framework can be instantiated to recover classical likelihood-based procedures for parametric problems, as well as yielding the first change detection method for many nonparametric problems. As a running example, we tackle the problem of detecting changes in the mean of a bounded random variable without i.i.d. assumptions, with an application to tracking the performance of a basketball team over multiple seasons.

 
more » « less
Award ID(s):
2015489
NSF-PAR ID:
10485366
Author(s) / Creator(s):
; ;
Publisher / Repository:
New England Statistical Society (NESS)
Date Published:
Journal Name:
The New England Journal of Statistics in Data Science
ISSN:
2693-7166
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by problems in data clustering, we establish general conditions under which families of nonparametric mixture models are identifiable, by introducing a novel framework involving clustering overfitted parametric (i.e. misspecified) mixture models. These identifiability conditions generalize existing conditions in the literature, and are flexible enough to include for example mixtures of Gaussian mixtures. In contrast to the recent literature on estimating nonparametric mixtures, we allow for general nonparametric mixture components, and instead impose regularity assumptions on the underlying mixing measure. As our primary application, we apply these results to partition-based clustering, generalizing the notion of a Bayes optimal partition from classical parametric model-based clustering to nonparametric settings. Furthermore, this framework is constructive so that it yields a practical algorithm for learning identified mixtures, which is illustrated through several examples on real data. The key conceptual device in the analysis is the convex, metric geometry of probability measures on metric spaces and its connection to the Wasserstein convergence of mixing measures. The result is a flexible framework for nonparametric clustering with formal consistency guarantees. 
    more » « less
  2. Abstract

    We consider the nonparametric estimation of an S-shaped regression function. The least squares estimator provides a very natural, tuning-free approach, but results in a non-convex optimization problem, since the inflection point is unknown. We show that the estimator may nevertheless be regarded as a projection onto a finite union of convex cones, which allows us to propose a mixed primal-dual bases algorithm for its efficient, sequential computation. After developing a projection framework that demonstrates the consistency and robustness to misspecification of the estimator, our main theoretical results provide sharp oracle inequalities that yield worst-case and adaptive risk bounds for the estimation of the regression function, as well as a rate of convergence for the estimation of the inflection point. These results reveal not only that the estimator achieves the minimax optimal rate of convergence for both the estimation of the regression function and its inflection point (up to a logarithmic factor in the latter case), but also that it is able to achieve an almost-parametric rate when the true regression function is piecewise affine with not too many affine pieces. Simulations and a real data application to air pollution modelling also confirm the desirable finite-sample properties of the estimator, and our algorithm is implemented in the R package Sshaped.

     
    more » « less
  3. Abstract

    Change‐point detection studies the problem of detecting the changes in the underlying distribution of the data stream as soon as possible after the change happens. Modern large‐scale, high‐dimensional, and complex streaming data call for computationally (memory) efficient sequential change‐point detection algorithms that are also statistically powerful. This gives rise to a computation versus statistical power trade‐off, an aspect less emphasized in the past in classic literature. This tutorial takes this new perspective and reviews several sequential change‐point detection procedures, ranging from classic sequential change‐point detection algorithms to more recent non‐parametric procedures that consider computation, memory efficiency, and model robustness in the algorithm design. Our survey also contains classic performance analysis, which provides useful techniques for analyzing new procedures.

    This article is categorized under:

    Statistical Models > Time Series Models

    Algorithms and Computational Methods > Algorithms

    Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data

     
    more » « less
  4. The offline pickup and delivery problem with time windows (PDPTW) is a classical combinatorial optimization problem in the transportation community, which has proven to be very challenging computationally. Due to the complexity of the problem, practical problem instances can be solved only via heuristics, which trade-off solution quality for computational tractability. Among the various heuristics, a common strategy is problem decomposition, that is, the reduction of a large-scale problem into a collection of smaller sub-problems, with spatial and temporal decompositions being two natural approaches. While spatial decomposition has been successful in certain settings, effective temporal decomposition has been challenging due to the difficulty of stitching together the sub-problem solutions across the decomposition boundaries. In this work, we introduce a novel temporal decomposition scheme for solving a class of PDPTWs that have narrow time windows, for which it is able to provide both fast and high-quality solutions. We utilize techniques that have been popularized recently in the context of online dial-a-ride problems along with the general idea of rolling horizon optimization. To the best of our knowledge, this is the first attempt to solve offline PDPTWs using such an approach. To show the performance and scalability of our framework, we use the optimization of paratransit services as a motivating example. Due to the lack of benchmark solvers similar to ours (i.e., temporal decomposition with an online solver), we compare our results with an offline heuristic algorithm using Google OR-Tools. In smaller problem instances (with an average of 129 requests per instance), the baseline approach is as competitive as our framework. However, in larger problem instances (approximately 2,500 requests per instance), our framework is more scalable and can provide good solutions to problem instances of varying degrees of difficulty, while the baseline algorithm often fails to find a feasible solution within comparable compute times. 
    more » « less
  5. We investigate the nonparametric, composite hypothesis testing problem for arbitrary unknown distributions in the asymptotic regime where both the sample size and the number of hypothesis grow exponentially large. Such asymptotic analysis is important in many practical problems, where the number of variations that can exist within a family of distributions can be countably infinite. We introduce the notion of discrimination capacity , which captures the largest exponential growth rate of the number of hypothesis relative to the sample size so that there exists a test with asymptotically vanishing probability of error. Our approach is based on various distributional distance metrics in order to incorporate the generative model of the data. We provide analyses of the error exponent using the maximum mean discrepancy and Kolmogorov–Smirnov distance and characterize the corresponding discrimination rates, i.e., lower bounds on the discrimination capacity, for these tests. Finally, an upper bound on the discrimination capacity based on Fano's inequality is developed. Numerical results are presented to validate the theoretical results. 
    more » « less