skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rolling Horizon Based Temporal Decomposition for the Offline Pickup and Delivery Problem with Time Windows
The offline pickup and delivery problem with time windows (PDPTW) is a classical combinatorial optimization problem in the transportation community, which has proven to be very challenging computationally. Due to the complexity of the problem, practical problem instances can be solved only via heuristics, which trade-off solution quality for computational tractability. Among the various heuristics, a common strategy is problem decomposition, that is, the reduction of a large-scale problem into a collection of smaller sub-problems, with spatial and temporal decompositions being two natural approaches. While spatial decomposition has been successful in certain settings, effective temporal decomposition has been challenging due to the difficulty of stitching together the sub-problem solutions across the decomposition boundaries. In this work, we introduce a novel temporal decomposition scheme for solving a class of PDPTWs that have narrow time windows, for which it is able to provide both fast and high-quality solutions. We utilize techniques that have been popularized recently in the context of online dial-a-ride problems along with the general idea of rolling horizon optimization. To the best of our knowledge, this is the first attempt to solve offline PDPTWs using such an approach. To show the performance and scalability of our framework, we use the optimization of paratransit services as a motivating example. Due to the lack of benchmark solvers similar to ours (i.e., temporal decomposition with an online solver), we compare our results with an offline heuristic algorithm using Google OR-Tools. In smaller problem instances (with an average of 129 requests per instance), the baseline approach is as competitive as our framework. However, in larger problem instances (approximately 2,500 requests per instance), our framework is more scalable and can provide good solutions to problem instances of varying degrees of difficulty, while the baseline algorithm often fails to find a feasible solution within comparable compute times.  more » « less
Award ID(s):
1952011
PAR ID:
10466139
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
4
ISSN:
2159-5399
Page Range / eLocation ID:
5151 to 5159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vehicle routing problems (VRPs) can be divided into two major categories: offline VRPs, which consider a given set of trip requests to be served, and online VRPs, which consider requests as they arrive in real-time. Based on discussions with public transit agencies, we identify a real-world problem that is not addressed by existing formulations: booking trips with flexible pickup windows (e.g., 3 hours) in advance (e.g., the day before) and confirming tight pickup windows (e.g., 30 minutes) at the time of booking. Such a service model is often required in paratransit service settings, where passengers typically book trips for the next day over the phone. To address this gap between offline and online problems, we introduce a novel formulation, the offline vehicle routing problem with online bookings. This problem is very challenging computationally since it faces the complexity of considering large sets of requests—similar to offline VRPs—but must abide by strict constraints on running time—similar to online VRPs. To solve this problem, we propose a novel computational approach, which combines an anytime algorithm with a learning-based policy for real-time decisions. Based on a paratransit dataset obtained from our partner transit agency, we demonstrate that our novel formulation and computational approach lead to significantly better outcomes in this service setting than existing algorithms. 
    more » « less
  2. Many transit agencies operating paratransit and microtransit ser-vices have to respond to trip requests that arrive in real-time, which entails solving hard combinatorial and sequential decision-making problems under uncertainty. To avoid decisions that lead to signifi-cant inefficiency in the long term, vehicles should be allocated to requests by optimizing a non-myopic utility function or by batching requests together and optimizing a myopic utility function. While the former approach is typically offline, the latter can be performed online. We point out two major issues with such approaches when applied to paratransit services in practice. First, it is difficult to batch paratransit requests together as they are temporally sparse. Second, the environment in which transit agencies operate changes dynamically (e.g., traffic conditions can change over time), causing the estimates that are learned offline to become stale. To address these challenges, we propose a fully online approach to solve the dynamic vehicle routing problem (DVRP) with time windows and stochastic trip requests that is robust to changing environmental dynamics by construction. We focus on scenarios where requests are relatively sparse-our problem is motivated by applications to paratransit services. We formulate DVRP as a Markov decision process and use Monte Carlo tree search to evaluate actions for any given state. Accounting for stochastic requests while optimizing a non-myopic utility function is computationally challenging; indeed, the action space for such a problem is intractably large in practice. To tackle the large action space, we leverage the structure of the problem to design heuristics that can sample promising actions for the tree search. Our experiments using real-world data from our partner agency show that the proposed approach outperforms existing state-of-the-art approaches both in terms of performance and robustness. 
    more » « less
  3. Resource allocation problems in many computer systems can be formulated as mathematical optimization problems. However, finding exact solutions to these problems using off-the-shelf solvers is often intractable for large problem sizes with tight SLAs, leading system designers to rely on cheap, heuristic algorithms. We observe, however, that many allocation problems are granular: they consist of a large number of clients and resources, each client requests a small fraction of the total number of resources, and clients can interchangeably use different resources. For these problems, we propose an alternative approach that reuses the original optimization problem formulation and leads to better allocations than domain-specific heuristics. Our technique, Partitioned Optimization Problems (POP), randomly splits the problem into smaller problems (with a subset of the clients and resources in the system) and coalesces the resulting sub-allocations into a global allocation for all clients. We provide theoretical and empirical evidence as to why random partitioning works well. In our experiments, POP achieves allocations within 1.5% of the optimal with orders-of-magnitude improvements in runtime compared to existing systems for cluster scheduling, traffic engineering, and load balancing. 
    more » « less
  4. Cell-free networks have emerged as a new paradigm for beyond-5G networks, offering uniform coverage and improved control over interference. However, scalability poses a challenge in full cell-free networks, where all access points (APs) serve all users. This challenge is addressed by user-centric clustering, where each user is served by a subset of APs, reducing complexity while maintaining coverage. In this paper, we provide an analysis of the relation between the user-centric clustering and pilot assignment problems in cell-free networks, and introduce a formulation which decouples both problems enabling each to be solved independently. We present a general problem formulation for the user-centric clustering problem, allowing the use of diverse per-user and network-wide performance metrics. Specifically, we focus on one instance of this framework, utilizing per-user spectral efficiency and network-wide sum spectral efficiency (SE) as metrics. Additionally, we formulate the pilot assignment problem to minimize overall channel estimation error while considering the user-centric clusters in evaluating the desirability of pilot assignments, which leads to better performing solutions. Both problems are classified as binary nonlinear programs that are at least NP-hard. To solve these optimization problems, our proposed methodology employs sample average approximation coupled with surrogate optimization for the user-centric clustering problem and utilizes the genetic algorithm for the pilot assignment problem. Numerical experiments demonstrate that the optimized solutions surpass baseline solutions, leading to significant improvements in spectral efficiency. 
    more » « less
  5. In this work we advance the understanding of the fundamental limits of computation for Binary Polynomial Optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points. In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical and computational perspective. In fact, we give a strongly polynomial-time algorithm for instances whose corresponding hypergraph is β-acyclic. We note that the β-acyclicity assumption is natural in several applications including relational database schemes and the lifted multicut problem on trees. Due to the novelty of our proving technique, we obtain an algorithm which is interesting also from a practical viewpoint. This is because our algorithm is very simple to implement and the running time is a polynomial of very low degree in the number of nodes and edges of the hypergraph. Our result completely settles the computational complexity of BPO over acyclic hypergraphs, since the problem is NP-hard on α-acyclic instances. Our algorithm can also be applied to any general BPO problem that contains β-cycles. For these problems, the algorithm returns a smaller instance together with a rule to extend any optimal solution of the smaller instance to an optimal solution of the original instance. 
    more » « less