skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The correlation function and detection of baryon acoustic oscillation peak from the spectroscopic SDSS-GalWCat galaxy cluster catalogue
ABSTRACT We measure the two-point correlation function (CF) of 1357 galaxy clusters with a mass of log10M200 ≥ 13.6 h−1 M⊙ and at a redshift of z ≤ 0.125. This work differs from previous analyses in that it utilizes a spectroscopic cluster catalogue, $$\tt {SDSS-GalWCat}$$, to measure the CF and detect the baryon acoustic oscillation (BAO) signal. Unlike previous studies which use statistical techniques, we compute covariance errors directly by generating a set of 1086 galaxy cluster light-cones from the GLAM N-body simulation. Fitting the CF with a power-law model of the form ξ(s) = (s/s0)−γ, we determine the best-fitting correlation length and power-law index at three mass thresholds. We find that the correlation length increases with increasing the mass threshold while the power-law index is almost constant. For log10M200 ≥ 13.6 h−1 M⊙, we find s0 = 14.54 ± 0.87 h−1 Mpc and γ = 1.97 ± 0.11. We detect the BAO signal at s = 100 h−1 Mpc with a significance of 1.60σ. Fitting the CF with a Lambda cold dark matter model, we find $$D_\mathrm{V}(z = 0.089)\mathit{r}^{\mathrm{ fid}}_\mathrm{ d}/\mathit{r}_\mathrm{ d} = 267.62 \pm 26$$ h−1 Mpc, consistent with Planck 2015 cosmology. We present a set of 108 high-fidelity simulated galaxy cluster light-cones from the high-resolution Uchuu N-body simulation, employed for methodological validation. We find DV(z = 0.089)/rd = 2.666 ± 0.129, indicating that our method does not introduce any bias in the parameter estimation for this small sample of galaxy clusters.  more » « less
Award ID(s):
2347348
PAR ID:
10485415
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Volume:
529
Issue:
1
ISSN:
1745-3925
Format(s):
Medium: X Size: p. L54-L59
Size(s):
p. L54-L59
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We investigate the redshift evolution of the intrinsic alignments (IAs) of galaxies in the MassiveBlackII (MBII) simulation. We select galaxy samples above fixed subhalo mass cuts ($$M_h\gt 10^{11,12,13}\,\mathrm{M}_{\odot }\, h^{-1}$$) at z = 0.6 and trace their progenitors to z = 3 along their merger trees. Dark matter components of z = 0.6 galaxies are more spherical than their progenitors while stellar matter components tend to be less spherical than their progenitors. The distribution of the galaxy–subhalo misalignment angle peaks at ∼10 deg with a mild increase with time. The evolution of the ellipticity–direction (ED) correlation amplitude ω(r) of galaxies (which quantifies the tendency of galaxies to preferentially point towards surrounding matter overdensities) is governed by the evolution in the alignment of underlying dark matter (DM) subhaloes to the matter density of field, as well as the alignment between galaxies and their DM subhaloes. At scales $$\sim 1~\mathrm{Mpc}\, h^{-1}$$, the alignment between DM subhaloes and matter overdensity gets suppressed with time, whereas the alignment between galaxies and DM subhaloes is enhanced. These competing tendencies lead to a complex redshift evolution of ω(r) for galaxies at $$\sim 1~\mathrm{Mpc}\, h^{-1}$$. At scales $$\gt 1~\mathrm{Mpc}\, h^{-1}$$, alignment between DM subhaloes and matter overdensity does not evolve significantly; the evolution of the galaxy–subhalo misalignment therefore leads to an increase in ω(r) for galaxies by a factor of ∼4 from z = 3 to 0.6 at scales $$\gt 1~\mathrm{Mpc}\, h^{-1}$$. The balance between competing physical effects is scale dependent, leading to different conclusions at much smaller scales ($$\sim 0.1~\mathrm{Mpc}\, h^{-1}$$). 
    more » « less
  2. ABSTRACT Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $$(25\, h^{-1}\, {\rm Mpc})^3$$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $$k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $$h\, \mathrm{Mpc}^{-1}$$. 
    more » « less
  3. ABSTRACT We use a simulation-based modelling approach to analyse the anisotropic clustering of the BOSS LOWZ sample over the radial range $$0.4 \, h^{-1} \, \mathrm{Mpc}$$ to $$63 \, h^{-1} \, \mathrm{Mpc}$$, significantly extending what is possible with a purely analytic modelling framework. Our full-scale analysis yields constraints on the growth of structure that are a factor of two more stringent than any other study on large scales at similar redshifts. We infer fσ8 = 0.471 ± 0.024 at $$z$$ ≈ 0.25, and fσ8 = 0.430 ± 0.025 at $$z$$ ≈ 0.40; the corresponding ΛCDM predictions of the Planck cosmic microwave background (CMB) analysis are 0.470 ± 0.006 and 0.476 ± 0.005, respectively. Our results are thus consistent with Planck, but also follow the trend seen in previous low-redshift measurements of fσ8 falling slightly below the ΛCDM + CMB prediction. We find that small- and large-radial scales yield mutually consistent values of fσ8, but there are 1−2.5σ hints of small scales ($$\lt 10 \, h^{-1} \, \mathrm{Mpc}$$) preferring lower values for fσ8 relative to larger scales. We analyse the constraining power of the full range of radial scales, finding that most of the multipole information about fσ8 is contained in the scales $$2 \, h^{-1} \, \mathrm{Mpc}\lesssim s \lesssim 20 \, h^{-1} \, \mathrm{Mpc}$$. Evidently, once the cosmological information of the quasi-to-nonlinear regime has been harvested, large-scale modes contain only modest additional information about structure growth. Finally, we compare predictions for the galaxy–galaxy lensing amplitude of the two samples against measurements from SDSS and assess the lensing-is-low effect in light of our findings. 
    more » « less
  4. ABSTRACT Galaxy clustering measurements can be used to constrain many aspects of galaxy evolution, including galaxy host halo masses, satellite quenching efficiencies, and merger rates. We simulate JWST galaxy clustering measurements at z ∼ 4–10 by utilizing mock galaxy samples produced by an empirical model, the universemachine. We also adopt the survey footprints and typical depths of the planned joint NIRCam and NIRSpec Guaranteed Time Observation program planned for Cycle 1 to generate realistic JWST survey realizations and to model high-redshift galaxy selection completeness. We find that galaxy clustering will be measured with ≳5σ significance at z ∼ 4–10. Halo mass precisions resulting from Cycle 1 angular clustering measurements will be ∼0.2 dex for faint (−18 ≳ $$\mathit {M}_{\mathrm{UV}}^{ }$$ ≳ −19) galaxies at z ∼ 4–10 as well as ∼0.3 dex for bright ($$\mathit {M}_{\mathrm{UV}}^{ }$$ ∼ −20) galaxies at z ∼ 4–7. Dedicated spectroscopic follow-up over ∼150 arcmin2 would improve these precisions by ∼0.1 dex by removing chance projections and low-redshift contaminants. Future JWST observations will therefore provide the first constraints on the stellar–halo mass relation in the epoch of reionization and substantially clarify how this relation evolves at z > 4. We also find that ∼1000 individual satellites will be identifiable at z ∼ 4–8 with JWST, enabling strong tests of satellite quenching evolution beyond currently available data (z ≲ 2). Finally, we find that JWST observations can measure the evolution of galaxy major merger pair fractions at z ∼ 4–8 with ∼0.1–0.2 dex uncertainties. Such measurements would help determine the relative role of mergers to the build-up of stellar mass into the epoch of reionization. 
    more » « less
  5. ABSTRACT While the first “seeds” of supermassive black holes (BH) can range from $$\sim 10^2-10^6 \rm ~{\rm M}_{\odot }$$, the lowest mass seeds ($$\lesssim 10^3~\rm {\rm M}_{\odot }$$) are inaccessible to most cosmological simulations due to resolution limitations. We present our new BRAHMA simulations that use a novel flexible seeding approach to predict the $$z\ge 7$$ BH populations for low-mass seeds. We ran two types of boxes that model $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds using two distinct but mutually consistent seeding prescriptions at different simulation resolutions. First, we have the highest resolution $$[9~\mathrm{Mpc}]^3$$ (BRAHMA-9-D3) boxes that directly resolve $$\sim 10^3~\rm {\rm M}_{\odot }$$ seeds and place them within haloes with dense, metal-poor gas. Second, we have lower resolution, larger volume $$[18~\mathrm{Mpc}]^3$$ (BRAHMA-18-E4), and $$\sim [36~\mathrm{Mpc}]^3$$ (BRAHMA-36-E5) boxes that seed their smallest resolvable $$\sim 10^4~\&~10^5~\mathrm{{\rm M}_{\odot }}$$ BH descendants using new stochastic seeding prescriptions calibrated using BRAHMA-9-D3. The three boxes together probe key BH observables between $$\sim 10^3\,\mathrm{ and}\,10^7~\rm {\rm M}_{\odot }$$. The active galactic nuclei (AGN) luminosity function variations are small (factors of $$\sim 2-3$$) at the anticipated detection limits of potential future X-ray facilities ($$\sim 10^{43}~ \mathrm{ergs~s^{-1}}$$ at $$z\sim 7$$). Our simulations predict BHs $$\sim 10-100$$ times heavier than the local $$M_*$$ versus $$M_{\mathrm{ bh}}$$ relations, consistent with several JWST-detected AGN. For different seed models, our simulations merge binaries at $$\sim 1-15~\mathrm{kpc}$$, with rates of $$\sim 200-2000$$ yr−1 for $$\gtrsim 10^3~\rm {\rm M}_{\odot }$$ BHs, $$\sim 6-60$$ yr−1 for $$\gtrsim 10^4~\rm {\rm M}_{\odot }$$ BHs, and up to $$\sim 10$$ yr−1 amongst $$\gtrsim 10^5~\rm {\rm M}_{\odot }$$ BHs. These results suggest that Laser Interferometer Space Antenna mission has promising prospects for constraining seed models. 
    more » « less