Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present an analysis of the number density of galaxies as a function of stellar mass (i.e., the stellar mass function (SMF)) in the COSMOS field atz∼ 3.3, making a comparison between the SMF in overdense environments and the SMF in the coeval field. In particular, this region contains the Elentári proto-supercluster, a system of six extended overdensities spanning ∼70 cMpc on a side. A clear difference is seen in the high-mass slope of these SMFs, with overdense regions showing an increase in the ratio of high-mass galaxies to low-mass galaxies relative to the field, indicating a more rapid buildup of stellar mass in overdense environments. This result qualitatively agrees with analyses of clusters atz∼ 1, though the differences between protocluster and field SMFs atz∼ 3.3 are smaller. While this is consistent with overdensities enhancing the evolution of their member galaxies, potentially through increased merger rates, whether this enhancement begins in protocluster environments or even earlier in group environments is still unclear. Though the measured fractions of quiescent galaxies between the field and overdense environments do not vary significantly, implying that this stellar mass enhancement is ongoing and any starbursts triggered by merger activity have not yet quenched, we note that spectroscopic observations are biased toward star-forming populations, particularly for low-mass galaxies. If mergers are indeed responsible, high-resolution imaging of Elentári and similar structures at these early epochs should then reveal increased merger rates relative to the field. Larger samples of well-characterized overdensities are necessary to draw broader conclusions in these areas.more » « less
-
Abstract Many quiescent galaxies discovered in the early Universe by JWST raise fundamental questions on when and how these galaxies became and stayed quenched. Making use of the latest version of the semianalytic model GAEA that provides good agreement with the observed quenched fractions up toz∼ 3, we make predictions for the expected fractions of quiescent galaxies up toz∼ 7 and analyze the main quenching mechanism. We find that in a simulated box of 685 Mpc on a side, the first quenched massive (M⋆∼ 1011M⊙), Milky Way–mass, and low-mass (M⋆∼ 109.5M⊙) galaxies appear atz∼ 4.5,z∼ 6.2, and beforez= 7, respectively. Most quenched galaxies identified at early redshifts remain quenched for more than 1 Gyr. Independently of galaxy stellar mass, the dominant quenching mechanism at high redshift is accretion disk feedback (quasar winds) from a central massive black hole, which is triggered by mergers in massive and Milky Way–mass galaxies and by disk instabilities in low-mass galaxies. Environmental stripping becomes increasingly more important at lower redshift.more » « less
-
ABSTRACT We measure the two-point correlation function (CF) of 1357 galaxy clusters with a mass of log10M200 ≥ 13.6 h−1 M⊙ and at a redshift of z ≤ 0.125. This work differs from previous analyses in that it utilizes a spectroscopic cluster catalogue, $$\tt {SDSS-GalWCat}$$, to measure the CF and detect the baryon acoustic oscillation (BAO) signal. Unlike previous studies which use statistical techniques, we compute covariance errors directly by generating a set of 1086 galaxy cluster light-cones from the GLAM N-body simulation. Fitting the CF with a power-law model of the form ξ(s) = (s/s0)−γ, we determine the best-fitting correlation length and power-law index at three mass thresholds. We find that the correlation length increases with increasing the mass threshold while the power-law index is almost constant. For log10M200 ≥ 13.6 h−1 M⊙, we find s0 = 14.54 ± 0.87 h−1 Mpc and γ = 1.97 ± 0.11. We detect the BAO signal at s = 100 h−1 Mpc with a significance of 1.60σ. Fitting the CF with a Lambda cold dark matter model, we find $$D_\mathrm{V}(z = 0.089)\mathit{r}^{\mathrm{ fid}}_\mathrm{ d}/\mathit{r}_\mathrm{ d} = 267.62 \pm 26$$ h−1 Mpc, consistent with Planck 2015 cosmology. We present a set of 108 high-fidelity simulated galaxy cluster light-cones from the high-resolution Uchuu N-body simulation, employed for methodological validation. We find DV(z = 0.089)/rd = 2.666 ± 0.129, indicating that our method does not introduce any bias in the parameter estimation for this small sample of galaxy clusters.more » « less
-
ABSTRACT We have identified 189 candidate z > 1.3 protoclusters and clusters in the LSST Deep Drilling Fields. This sample will enable the measurement of the metal enrichment and star formation history of clusters during their early assembly period through the direct measurement of the rate of supernovae identified through the LSST. The protocluster sample was selected from galaxy overdensities in a Spitzer/IRAC colour-selected sample using criteria that were optimized for protocluster purity using a realistic light-cone. Our tests reveal that $$60\!-\!80~{{\ \rm per\ cent}}$$ of the identified candidates are likely to be genuine protoclusters or clusters, which is corroborated by a ∼4σ stacked X-ray signal from these structures. We provide photometric redshift estimates for 47 candidates which exhibit strong peaks in the photo-z distribution of their candidate members. However, the lack of a photo-z peak does not mean a candidate is not genuine, since we find a stacked X-ray signal of similar significance from both the candidates that exhibit photo-z peaks and those that do not. Tests on the light-cone reveal that our pursuit of a pure sample of protoclusters results in that sample being highly incomplete ($$\sim 4~{{\ \rm per\ cent}}$$) and heavily biased towards larger, richer, more massive, and more centrally concentrated protoclusters than the total protocluster population. Most ($$\sim 75~{{\ \rm per\ cent}}$$) of the selected protoclusters are likely to have a maximum collapsed halo mass of between 1013 and 1014 M⊙, with only $$\sim 25~{{\ \rm per\ cent}}$$ likely to be collapsed clusters above 1014 M⊙. However, the aforementioned bias ensures our sample is $$\sim 50~{{\ \rm per\ cent}}$$ complete for structures that have already collapsed into clusters more massive than 1014 M⊙.more » « less
-
ABSTRACT We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($$\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($$\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$$), no additional environmental quenching is required.more » « less
-
ABSTRACT We explore models of massive (>1010 M⊙) satellite quenching in massive clusters at z ≳ 1 using an MCMC framework, focusing on two primary parameters: Rquench (the host-centric radius at which quenching begins) and τquench (the time-scale upon which a satellite quenches after crossing Rquench). Our MCMC analysis shows two local maxima in the 1D posterior probability distribution of Rquench at approximately 0.25 and 1.0 R200. Analysing four distinct solutions in the τquench–Rquench parameter space, nearly all of which yield quiescent fractions consistent with observational data from the GOGREEN survey, we investigate whether these solutions represent distinct quenching pathways and find that they can be separated between ‘starvation’ and ‘core quenching’ scenarios. The starvation pathway is characterized by quenching time-scales that are roughly consistent with the total cold gas (H2 + H i) depletion time-scale at intermediate z, while core quenching is characterized by satellites with relatively high line-of-sight velocities that quench on short time-scales (∼0.25 Gyr) after reaching the inner region of the cluster (<0.30 R200). Lastly, we break the degeneracy between these solutions by comparing the observed properties of transition galaxies from the GOGREEN survey. We conclude that only the ‘starvation’ pathway is consistent with the projected phase-space distribution and relative abundance of transition galaxies at z ∼ 1. However, we acknowledge that ram pressure might contribute as a secondary quenching mechanism.more » « less
-
ABSTRACT Motivated by spectroscopic confirmation of three overdense regions in the COSMOS field at z ∼ 3.35, we analyse the uniquely deep multiwavelength photometry and extensive spectroscopy available in the field to identify any further related structure. We construct a three-dimensional density map using the Voronoi tesselation Monte Carlo method and find additional regions of significant overdensity. Here, we present and examine a set of six overdense structures at 3.20 < z < 3.45 in the COSMOS field, the most well-characterized of which, PCl J0959 + 0235, has 80 spectroscopically confirmed members and an estimated mass of 1.35 × 1015 M⊙, and is modelled to virialize at z ∼ 1.5−2.0. These structures contain 10 overdense peaks with >5σ overdensity separated by up to 70 cMpc, suggestive of a proto-supercluster similar to the Hyperion system at z ∼ 2.45. Upcoming photometric surveys with JWST such as COSMOS-Web, and further spectroscopic follow-up will enable more extensive analysis of the evolutionary effects that such an environment may have on its component galaxies at these early times.more » « less
-
Abstract The cluster mass–richness relation (MRR) is an observationally efficient and potentially powerful cosmological tool for constraining the matter density Ωmand the amplitude of fluctuationsσ8using the cluster abundance technique. We derive the MRR relation usingGalWCat19, a publicly available galaxy cluster catalog we created from the Sloan Digital Sky Survey-DR13 spectroscopic data set. In the MRR, cluster mass scales with richness as . We find that the MRR we derive is consistent with both the IllustrisTNG and mini-Uchuu cosmological numerical simulations, with a slope ofβ≈ 1. We use the MRR we derived to estimate cluster masses from theGalWCat19catalog, which we then use to set constraints on Ωmandσ8. Utilizing the all-member MRR, we obtain constraints of Ωm= andσ8= , and utilizing the red member MRR only, we obtain Ωm= andσ8= . Our constraints on Ωmandσ8are consistent and very competitive with the Planck 2018 results.more » « less
-
Abstract We investigate the resolved kinematics of the molecular gas, as traced by the Atacama Large Millimeter/submillimeter Array in CO (2−1), of 25 cluster member galaxies across three different clusters at a redshift ofz∼ 1.6. This is the first large-scale analysis of the molecular gas kinematics of cluster galaxies at this redshift. By separately estimating the rotation curve of the approaching and receding sides of each galaxy via kinematic modeling, we quantify the difference in total circular velocity to characterize the overall kinematic asymmetry of each galaxy. 3/14 of the galaxies in our sample that we are able to model have similar degrees of asymmetry as that observed in galaxies in the field at similar redshift based on observations of mainly ionized gas. However, this leaves 11/14 galaxies in our sample with significantly higher asymmetry, and some of these galaxies have degrees of asymmetry of up to ∼50 times higher than field galaxies observed at similar redshift. Some of these extreme cases also have one-sided tail-like morphology seen in the molecular gas, supporting a scenario of tidal and/or ram pressure interaction. Such stark differences in the kinematic asymmetry in clusters versus the field suggest the evolutionary influence of dense environments, established as being a major driver of galaxy evolution at low redshift, is also active in the high-redshift universe.more » « less
-
ABSTRACT Recent observations have shown that the environmental quenching of galaxies at z ∼ 1 is qualitatively different to that in the local Universe. However, the physical origin of these differences has not yet been elucidated. In addition, while low-redshift comparisons between observed environmental trends and the predictions of cosmological hydrodynamical simulations are now routine, there have been relatively few comparisons at higher redshifts to date. Here we confront three state-of-the-art suites of simulations (BAHAMAS+MACSIS, EAGLE+Hydrangea, IllustrisTNG) with state-of-the-art observations of the field and cluster environments from the COSMOS/UltraVISTA and GOGREEN surveys, respectively, at z ∼ 1 to assess the realism of the simulations and gain insight into the evolution of environmental quenching. We show that while the simulations generally reproduce the stellar content and the stellar mass functions of quiescent and star-forming galaxies in the field, all the simulations struggle to capture the observed quenching of satellites in the cluster environment, in that they are overly efficient at quenching low-mass satellites. Furthermore, two of the suites do not sufficiently quench the highest mass galaxies in clusters, perhaps a result of insufficient feedback from AGN. The origin of the discrepancy at low stellar masses ($$M_* \lesssim 10^{10}$$ M⊙), which is present in all the simulations in spite of large differences in resolution, feedback implementations, and hydrodynamical solvers, is unclear. The next generation of simulations, which will push to significantly higher resolution and also include explicit modelling of the cold interstellar medium, may help us to shed light on the low-mass tension.more » « less