skip to main content


Title: The Peak of the Fallback Rate from Tidal Disruption Events: Dependence on Stellar Type
Abstract

A star completely destroyed in a tidal disruption event (TDE) ignites a luminous flare that is powered by the fallback of tidally stripped debris to a supermassive black hole (SMBH) of massM. We analyze two estimates for the peak fallback rate in a TDE, one being the “frozen-in” model, which predicts a strong dependence of the time to peak fallback rate,tpeak, on both stellar mass and age, with 15 days ≲tpeak≲ 10 yr for main sequence stars with masses 0.2 ≤M/M≤ 5 andM= 106M. The second estimate, which postulates that the star is completely destroyed when tides dominate the maximum stellar self-gravity, predicts thattpeakis very weakly dependent on stellar type, withtpeak=23.2±4.0daysM/106M1/2for 0.2 ≤M/M≤ 5, whiletpeak=29.8±3.6daysM/106M1/2for a Kroupa initial mass function truncated at 1.5M. This second estimate also agrees closely with hydrodynamical simulations, while the frozen-in model is discrepant by orders of magnitude. We conclude that (1) the time to peak luminosity in complete TDEs is almost exclusively determined by SMBH mass, and (2) massive-star TDEs power the largest accretion luminosities. Consequently, (a) decades-long extra-galactic outbursts cannot be powered by complete TDEs, including massive-star disruptions, and (b) the most highly super-Eddington TDEs are powered by the complete disruption of massive stars, which—if responsible for producing jetted TDEs—would explain the rarity of jetted TDEs and their preference for young and star-forming host galaxies.

 
more » « less
NSF-PAR ID:
10485436
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
961
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L2
Size(s):
["Article No. L2"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a toy model for the thermal optical/UV/X-ray emission from tidal disruption events (TDEs). Motivated by recent hydrodynamical simulations, we assume that the debris streams promptly and rapidly circularize (on the orbital period of the most tightly bound debris), generating a hot quasi-spherical pressure-supported envelope of radiusRv∼ 1014cm (photosphere radius ∼1015cm) surrounding the supermassive black hole (SMBH). As the envelope cools radiatively, it undergoes Kelvin–Helmholtz contractionRvt−1, its temperature risingTefft1/2while its total luminosity remains roughly constant; the optical luminosity decays asνLνRv2Tefft3/2. Despite this similarity to the mass fallback rateṀfbt5/3, envelope heating from fallback accretion is subdominant compared to the envelope cooling luminosity except near optical peak (where they are comparable). Envelope contraction can be delayed by energy injection from accretion from the inner envelope onto the SMBH in a regulated manner, leading to a late-time flattening of the optical/X-ray light curves, similar to those observed in some TDEs. Eventually, as the envelope contracts to near the circularization radius, the SMBH accretion rate rises to its maximum, in tandem with the decreasing optical luminosity. This cooling-induced (rather than circularization-induced) delay of up to several hundred days may account for the delayed onset of thermal X-rays, late-time radio flares, and high-energy neutrino generation, observed in some TDEs. We compare the model predictions to recent TDE light-curve correlation studies, finding both agreement and points of tension.

     
    more » « less
  2. Abstract

    The presence of magnetic fields in the late inspiral of black hole–neutron star binaries could lead to potentially detectable electromagnetic precursor transients. Using general-relativistic force-free electrodynamics simulations, we investigate premerger interactions of the common magnetosphere of black hole–neutron star systems. We demonstrate that these systems can feature copious electromagnetic flaring activity, which we find depends on the magnetic field orientation but not on black hole spin. Due to interactions with the surrounding magnetosphere, these flares could lead to fast-radio-burst-like transients and X-ray emission, withEM1041B*/1012G2ergs1as an upper bound on the luminosity, whereB*is the magnetic field strength on the surface of the neutron star.

     
    more » « less
  3. Abstract

    We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (MBH) with host galaxy scaling relations, showing that the sampleMBHranges from 105.1Mto 108.2M. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg-band luminosity function can be well described by a broken power law ofϕ(Lg)Lg/Lbk0.3+Lg/Lbk2.61, withLbk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (MBH/M) ≲ 107.3, the TDE mass function followsϕ(MBH)MBH0.25, which favors a flat local BH mass function (dnBH/dlogMBHconstant). We confirm the significant rate suppression at the high-mass end (MBH≳ 107.5M), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofMgal∼ 1010M, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies with red, green, and blue colors.

     
    more » « less
  4. Abstract

    We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fast-rotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signal-to-noise ratio integral field spectroscopy (IFS) from the Gemini Multi-Object Spectrograph with wide-field data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (MBH), stellar mass-to-light ratio, dark matter content, and intrinsic shape. We findMBH=1.7±0.4×109Mand a triaxial intrinsic shape with axis ratiosp=b/a= 0.902 ± 0.009 andq=c/a=0.7210.010+0.011, triaxiality parameterT= 0.39 ± 0.04. In comparison, the best-fit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 preferMBH=2.4±0.6×109MandMBH=2.9±0.3×109M, respectively. Neither model can account for the non-axisymmetric stellar velocity features present in the IFS data.

     
    more » « less
  5. Abstract

    The repeating fast radio burst FRB 20190520B is an anomaly of the FRB population thanks to its high dispersion measure (DM = 1205 pc cm−3) despite its low redshift ofzfrb= 0.241. This excess has been attributed to a large host contribution of DMhost≈ 900 pc cm−3, far larger than any other known FRB. In this paper, we describe spectroscopic observations of the FRB 20190520B field obtained as part of the FLIMFLAM survey, which yielded 701 galaxy redshifts in the field. We find multiple foreground galaxy groups and clusters, for which we then estimated halo masses by comparing their richness with numerical simulations. We discover two separateMhalo> 1014Mgalaxy clusters atz= 0.1867 and 0.2170 that are directly intersected by the FRB sight line within their characteristic halo radiusr200. Subtracting off their estimated DM contributions, as well that of the diffuse intergalactic medium, we estimate a host contribution ofDMhost=430220+140or280170+140pccm3(observed frame), depending on whether we assume that the halo gas extends tor200or 2 ×r200. This significantly smaller DMhost—no longer the largest known value—is now consistent with Hαemission measures of the host galaxy without invoking unusually high gas temperatures. Combined with the observed FRB scattering timescale, we estimate the turbulent fluctuation and geometric amplification factor of the scattering layer to beF˜G4.511(pc2km)1/3, suggesting that most of the gas is close to the FRB host. This result illustrates the importance of incorporating foreground data for FRB analyses both for understanding the nature of FRBs and to realize their potential as a cosmological probe.

     
    more » « less