skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High proportions of bacteria are culturable across major biomes
Abstract The paradigm that only 1% of microbes are culturable has had a profound impact on our understanding of microbial ecology and is still a major motivation for mostly using molecular tools to characterize microbial communities. However, this point is often expressed vaguely, suggesting that some scientists have different interpretations of the paradigm. In addition, there have been substantial advances in cultivation techniques suggesting that this paradigm may no longer be correct. To quantify bacterial culturability across six major biomes, I found that the median 16S rRNA similarity of bacteria to known cultured relatives was 97.3 ± 2.3% (s.d.). Furthermore, 52.0 ± 24% of sequences and 34.9 ± 23% of taxa (defined as >97% similar) had a closely related cultured relative. Thus, many cells and taxa across environments are culturable with known techniques, suggesting that the 1% paradigm is no longer correct.  more » « less
Award ID(s):
1848576
PAR ID:
10485667
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
13
Issue:
8
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 2125-2128
Size(s):
p. 2125-2128
Sponsoring Org:
National Science Foundation
More Like this
  1. Microorganisms are ubiquitous in freshwater aquatic environments, but little is known about their abundance, diversity, and transport. We designed and deployed a remote-operated water-sampling system onboard an unmanned surface vehicle (USV, a remote-controlled boat) to collect and characterize microbes in a freshwater lake in Virginia, USA. The USV collected water samples simultaneously at 5 and 50 cm below the surface of the water at three separate locations over three days in October, 2016. These samples were plated on a non-selective medium (TSA) and on a medium selective for the genusPseudomonas(KBC) to estimate concentrations of culturable bacteria in the lake. Mean concentrations ranged from 134 to 407 CFU/mL for microbes cultured on TSA, and from 2 to 8 CFU/mL for microbes cultured on KBC. There was a significant difference in the concentration of microbes cultured on KBC across three sampling locations in the lake (P= 0.027), suggesting an uneven distribution ofPseudomonasacross the locations sampled. There was also a significant difference in concentrations of microbes cultured on TSA across the three sampling days (P= 0.038), demonstrating daily fluctuations in concentrations of culturable bacteria. There was no significant difference in concentrations of microbes cultured on TSA (P= 0.707) and KBC (P= 0.641) across the two depths sampled, suggesting microorganisms were well-mixed between 5 and 50 cm below the surface of the water. About 1 percent (7/720) of the colonies recovered across all four sampling missions were ice nucleation active (ice+) at temperatures warmer than −10 °C. Our work extends traditional manned observations of aquatic environments to unmanned systems, and highlights the potential for USVs to understand the distribution and diversity of microbes within and above freshwater aquatic environments. 
    more » « less
  2. ABSTRACT Variation in dispersal ability among taxa affects community assembly and biodiversity maintenance within metacommunities. Although fungi and bacteria frequently coexist, their relative dispersal abilities are poorly understood. Nectar-inhabiting microbial communities affect plant reproduction and pollinator behavior, and are excellent models for studying dispersal of bacteria and fungi in a metacommunity framework. Here, we assay dispersal ability of common nectar bacteria and fungi in an insect-based dispersal experiment. We then compare these results with the incidence and abundance of culturable flower-inhabiting bacteria and fungi within naturally occurring flowers across two coflowering communities in California across two flowering seasons. Our microbial dispersal experiment demonstrates that bacteria disperse via thrips among artificial habitat patches more readily than fungi. In the field, incidence and abundance of culturable bacteria and fungi were positively correlated, but bacteria were much more widespread. These patterns suggest shared dispersal routes or habitat requirements among culturable bacteria and fungi, but differences in dispersal or colonization frequency by thrips, common flower visitors. The finding that culturable bacteria are more common among nectar sampled here, in part due to superior thrips-mediated dispersal, may have relevance for microbial life history, community assembly of microbes, and plant–pollinator interactions. 
    more » « less
  3. Abstract BackgroundRoot and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil). ResultsTo capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community. ConclusionsOur results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions. 
    more » « less
  4. Abstract The fate of oceanic carbon and nutrients depends on interactions between viruses, prokaryotes, and unicellular eukaryotes (protists) in a highly interconnected planktonic food web. To date, few controlled mechanistic studies of these interactions exist, and where they do, they are largely pairwise, focusing either on viral infection (i.e., virocells) or protist predation. Here we studied population-level responses of Synechococcus cyanobacterial virocells (i.e., cyanovirocells) to the protist Oxyrrhis marina using transcriptomics, endo- and exo-metabolomics, photosynthetic efficiency measurements, and microscopy. Protist presence had no measurable impact on Synechococcus transcripts or endometabolites. The cyanovirocells alone had a smaller intracellular transcriptional and metabolic response than cyanovirocells co-cultured with protists, displaying known patterns of virus-mediated metabolic reprogramming while releasing diverse exometabolites during infection. When protists were added, several exometabolites disappeared, suggesting microbial consumption. In addition, the intracellular cyanovirocell impact was largest, with 4.5- and 10-fold more host transcripts and endometabolites, respectively, responding to protists, especially those involved in resource and energy production. Physiologically, photosynthetic efficiency also increased, and together with the transcriptomics and metabolomics findings suggest that cyanovirocell metabolic demand is highest when protists are present. These data illustrate cyanovirocell responses to protist presence that are not yet considered when linking microbial physiology to global-scale biogeochemical processes. 
    more » « less
  5. Abstract Across diverse taxa, offspring from older mothers have decreased lifespan and fitness. Little is known about the extent to which maternal age effects vary among genotypes for a given species, however, except for studies of a few arthropod species. To investigate the presence and degree of intraspecific variability in maternal age effects, we compared lifespan, reproductive schedule, and lifetime reproductive output of offspring produced by young, middle‐aged, and old mothers in four strains of rotifers in theBrachionus plicatilisspecies complex. We found significant variability among strains in the magnitude and direction of maternal age effects on offspring life history traits. In one strain, offspring of young mothers lived 20% longer than offspring of old mothers, whereas there were no significant effects of maternal age on lifespan for other strains. Depending on strain, advanced maternal age had positive effects, negative effects, or no effect on lifetime reproductive output. Across strains, older mothers produced offspring that had higher maximum daily reproduction early in life. The effects of maternal age on offspring vital rates could not be explained by changes in trade‐offs between lifespan and reproduction. This study documents intraspecific variability in maternal age effects in an additional clade. Investigating intraspecific variability is critical for understanding the ubiquity of maternal age effects and their role in the evolution of life history and aging. 
    more » « less