skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shapes of a filament on the surface of a bubble
The shape assumed by a slender elastic structure is a function both of the geometry of the space in which it exists and the forces it experiences. We explore, by experiments and theoretical analysis, the morphological phase space of a filament confined to the surface of a spherical bubble. The morphology is controlled by varying bending stiffness and weight of the filament, and its length relative to the bubble radius. When the dominant considerations are the geometry of confinement and elastic energy, the filament lies along a geodesic and when gravitational energy becomes significant, a bifurcation occurs, with a part of the filament occupying a longitude and the rest along a curve approximated by a latitude. Far beyond the transition, when the filament is much longer than the diameter, it coils around the selected latitudinal region. A simple model with filament shape as a composite of two arcs captures the transition well. For better quantitative agreement with the subcritical nature of bifurcation, we study the morphology by numerical energy minimization. Our analysis of the filament’s morphological space spanned by one geometric parameter, and one parameter that compares elastic energy with body forces, may provide guidance for packing slender structures on complex surfaces.  more » « less
Award ID(s):
1905698
PAR ID:
10485671
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
477
Issue:
2253
ISSN:
1364-5021
Page Range / eLocation ID:
20210353
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Slender fibres are ubiquitous in biology, physics and engineering, with prominent examples including bacterial flagella and cytoskeletal fibres. In this setting, slender body theories (SBTs), which give the resistance on the fibre asymptotically in its slenderness $$\epsilon$$ , are useful tools for both analysis and computations. However, a difficulty arises when accounting for twist and cross-sectional rotation: because the angular velocity of a filament can vary depending on the order of magnitude of the applied torque, asymptotic theories must give accurate results for rotational dynamics over a range of angular velocities. In this paper, we first survey the challenges in applying existing SBTs, which are based on either singularity or full boundary integral representations, to rotating filaments, showing in particular that they fail to consistently treat rotation–translation coupling in curved filaments. We then provide an alternative approach which approximates the three-dimensional dynamics via a one-dimensional line integral of Rotne–Prager–Yamakawa regularized singularities. While unable to accurately resolve the flow field near the filament, this approach gives a grand mobility with symmetric rotation–translation and translation–rotation coupling, making it applicable to a broad range of angular velocities. To restore fidelity to the three-dimensional filament geometry, we use our regularized singularity model to inform a simple empirical equation which relates the mean force and torque along the filament centreline to the translational and rotational velocity of the cross-section. The single unknown coefficient in the model is estimated numerically from three-dimensional boundary integral calculations on a rotating, curved filament. 
    more » « less
  2. Abstract In this article, we use the Nehari manifold and the eigenvalue problem for the negative Laplacian with Dirichlet boundary condition to analytically study the minimizers for the de Gennes–Cahn–Hilliard energy with quartic double‐well potential and Dirichlet boundary condition on the bounded domain. Our analysis reveals a bifurcation phenomenon determined by the boundary value and a bifurcation parameter that describes the thickness of the transition layer that segregates the binary mixture's two phases. Specifically, when the boundary value aligns precisely with the average of the pure phases, and the bifurcation parameter surpasses or equals a critical threshold, the minimizer assumes a unique form, representing the homogeneous state. Conversely, when the bifurcation parameter falls below this critical value, two symmetric minimizers emerge. Should the boundary value be larger or smaller from the average of the pure phases, symmetry breaks, resulting in a unique minimizer. Furthermore, we derive bounds of these minimizers, incorporating boundary conditions and features of the de Gennes–Cahn–Hilliard energy. 
    more » « less
  3. Abstract When an overhand knot tied in an elastic rod is tightened, it can undergo a sudden change in shape through snap buckling. In this article, we use a combination of discrete differential geometry (DDG)-based simulations and tabletop experiments to explore the onset of buckling as a function of knot topology, rod geometry, and friction. In our setup, two open ends of an overhand knot are slowly pulled apart, which leads to snap buckling in the knot loop. We call this phenomenon “inversion” since the loop appears to move dramatically from one side of the knot to the other. This inversion occurs due to the coupling of elastic energy between the braid (the portion of the knot in self-contact) and the loop (the portion of the knot with two ends connected to the braid). A numerical framework is implemented that combines discrete elastic rods with a constraint-based method for frictional contact to explore inversion in overhand knots. The numerical simulation robustly captures inversion in the knot and is found to be in good agreement with experimental results. In order to gain physical insight into the inversion process, we also develop a simplified model of the knot that does not require simulation of self-contact, which allows us to visualize the bifurcation that results in snap buckling. 
    more » « less
  4. Intelligent biological systems are characterized by their embodiment in a complex environment and the intimate interplay between their nervous systems and the nonlinear mechanical properties of their bodies. This coordination, in which the dynamics of the motor system co-evolved to reduce the computational burden on the brain, is referred to as "mechanical intelligence" or "morphological computation". In this work, we seek to develop machine learning analogs of this process, in which we jointly learn the morphology of complex nonlinear elastic solids along with a deep neural network to control it. By using a specialized differentiable simulator of elastic mechanics coupled to conventional deep learning architectures---which we refer to as neuromechanical autoencoders---we are able to learn to perform morphological computation via gradient descent. Key to our approach is the use of mechanical metamaterials---cellular solids, in particular---as the morphological substrate. Just as deep neural networks provide flexible and massively-parametric function approximators for perceptual and control tasks, cellular solid metamaterials are promising as a rich and learnable space for approximating a variety of actuation tasks. In this work we take advantage of these complementary computational concepts to co-design materials and neural network controls to achieve nonintuitive mechanical behavior. We demonstrate in simulation how it is possible to achieve translation, rotation, and shape matching, as well as a "digital MNIST" task. We additionally manufacture and evaluate one of the designs to verify its real-world behavior. 
    more » « less
  5. null (Ed.)
    We study analytically and numerically the minimizers for the Cahn-Hilliard energy functional with a symmetric quartic double-well potential and under a strong anchoring condition(i.e., the Dirichlet condition) on the boundary of an underlying bounded domain. We show a bifurcation phenomenon determined by the boundary value and a parameter that describes the thickness of a transition layer separating two phases of an underlying system of binary mixtures. For the case that the boundary value is exactly the average of the two pure phases, if the bifurcation parameter is larger than or equal to a critical value, then the minimizer is unique and is exactly the homogeneous state. Otherwise, there are exactly two symmetric minimizers. The critical bifurcation value is inversely proportional to the first eigenvalue of the negative Laplace operator with the zero Dirichlet boundary condition. For a boundary value that is larger (or smaller) than that of the average of the two pure phases, the symmetry is broken and there is only one minimizer. We also obtain the bounds and morphological properties of the minimizers under additional assumptions on the domain.Our analysis utilizes the notion of the Nehari manifold and connects it to the eigenvalue problem for the negative Laplacian with the homogeneous boundary condition. We numerically minimize the functional E by solving the gradient-flow equation of E, i.e., the Allen-Cahn equation, with the designated boundary conditions, and with random initial values. We present our numerical simulations and discuss them in the context of our analytical results. 
    more » « less