Abstract In this article, we use the Nehari manifold and the eigenvalue problem for the negative Laplacian with Dirichlet boundary condition to analytically study the minimizers for the de Gennes–Cahn–Hilliard energy with quartic double‐well potential and Dirichlet boundary condition on the bounded domain. Our analysis reveals a bifurcation phenomenon determined by the boundary value and a bifurcation parameter that describes the thickness of the transition layer that segregates the binary mixture's two phases. Specifically, when the boundary value aligns precisely with the average of the pure phases, and the bifurcation parameter surpasses or equals a critical threshold, the minimizer assumes a unique form, representing the homogeneous state. Conversely, when the bifurcation parameter falls below this critical value, two symmetric minimizers emerge. Should the boundary value be larger or smaller from the average of the pure phases, symmetry breaks, resulting in a unique minimizer. Furthermore, we derive bounds of these minimizers, incorporating boundary conditions and features of the de Gennes–Cahn–Hilliard energy.
more »
« less
Minimizers for the Cahn--Hilliard energy functional under strong anchoring conditions
We study analytically and numerically the minimizers for the Cahn-Hilliard energy functional with a symmetric quartic double-well potential and under a strong anchoring condition(i.e., the Dirichlet condition) on the boundary of an underlying bounded domain. We show a bifurcation phenomenon determined by the boundary value and a parameter that describes the thickness of a transition layer separating two phases of an underlying system of binary mixtures. For the case that the boundary value is exactly the average of the two pure phases, if the bifurcation parameter is larger than or equal to a critical value, then the minimizer is unique and is exactly the homogeneous state. Otherwise, there are exactly two symmetric minimizers. The critical bifurcation value is inversely proportional to the first eigenvalue of the negative Laplace operator with the zero Dirichlet boundary condition. For a boundary value that is larger (or smaller) than that of the average of the two pure phases, the symmetry is broken and there is only one minimizer. We also obtain the bounds and morphological properties of the minimizers under additional assumptions on the domain.Our analysis utilizes the notion of the Nehari manifold and connects it to the eigenvalue problem for the negative Laplacian with the homogeneous boundary condition. We numerically minimize the functional E by solving the gradient-flow equation of E, i.e., the Allen-Cahn equation, with the designated boundary conditions, and with random initial values. We present our numerical simulations and discuss them in the context of our analytical results.
more »
« less
- Award ID(s):
- 1913144
- PAR ID:
- 10288371
- Date Published:
- Journal Name:
- SIAM journal on applied mathematics
- Volume:
- 80
- Issue:
- 5
- ISSN:
- 0036-1399
- Page Range / eLocation ID:
- 2299-2317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We prove a regularity theorem for the free boundary of minimizers of the two-phase Bernoulli problem, completing the analysis started by Alt, Caffarelli and Friedman in the 80s. As a consequence, we also show regularity of minimizers of the multiphase spectral optimization problem for the principal eigenvalue of the Dirichlet Laplacian.more » « less
-
We consider a 2D free boundary model of cell motility, inspired by the 1D contraction-driven cell motility model due to P. Recho, T. Putelat, and L. Truskinovsky [Phys. Rev. Lett. 111 (2013), p. 108102]. The key ingredients of the model are the Darcy law for overdamped motion of the acto-myosin network, coupled with the advection-diffusion equation for myosin density. These equations are supplemented with the Young-Laplace equation for the pressure and no-flux condition for the myosin density on the boundary, while evolution of the boundary is subject to the acto-myosin flow at the edge. The focus of the work is on stability analysis of stationary solutions and translationally moving traveling wave solutions. We study stability of radially symmetric stationary solutions and show that at some critical radius a pitchfork bifurcation occurs, resulting in emergence of a family of traveling wave solutions. We perform linear stability analysis of these latter solutions with small velocities and reveal the type of bifurcation (sub- or supercritical). The main result of this work is an explicit asymptotic formula for the stability determining eigenvalue in the limit of small traveling wave velocities.more » « less
-
We present a method of detecting bifurcations by locating zeros of a signed version of the smallest singular value of the Jacobian. This enables the use of quadratically convergent root-bracketing techniques or Chebyshev interpolation to locate bifurcation points. Only positive singular values have to be computed, though the method relies on the existence of an analytic or smooth singular value decomposition (SVD). The sign of the determinant of the Jacobian, computed as part of the bidiagonal reduction in the SVD algorithm, eliminates slope discontinuities at the zeros of the smallest singular value. We use the method to search for spatially quasi-periodic traveling water waves that bifurcate from large-amplitude periodic waves. The water wave equations are formulated in a conformal mapping framework to facilitate the computation of the quasi-periodic Dirichlet-Neumann operator. We find examples of pure gravity waves with zero surface tension and overhanging gravity-capillary waves. In both cases, the waves have two spatial quasi-periods whose ratio is irrational. We follow the secondary branches via numerical continuation beyond the realm of linearization about solutions on the primary branch to obtain traveling water waves that extend over the real line with no two crests or troughs of exactly the same shape. The pure gravity wave problem is of relevance to ocean waves, where capillary effects can be neglected. Such waves can only exist through secondary bifurcation as they do not persist to zero amplitude. The gravity-capillary wave problem demonstrates the effectiveness of using the signed smallest singular value as a test function for multi-parameter bifurcation problems. This test function becomes mesh independent once the mesh is fine enough.more » « less
-
The primal variational formulation of the fourth-order Cahn-Hilliard equation requires C1-continuous finite element discretizations, e.g., in the context of isogeometric analysis. In this paper, we explore the variational imposition of essential boundary conditions that arise from the thermodynamic derivation of the Cahn-Hilliard equation in primal variables. Our formulation is based on the symmetric variant of Nitsche's method, does not introduce additional degrees of freedom and is shown to be variationally consistent. In contrast to strong enforcement, the new boundary condition formulation can be naturally applied to any mapped isogeometric parametrization of any polynomial degree. In addition, it preserves full accuracy, including higher-order rates of convergence, which we illustrate for boundary-fitted discretizations of several benchmark tests in one, two and three dimensions. Unfitted Cartesian B-spline meshes constitute an effective alternative to boundary-fitted isogeometric parametrizations for constructing C1-continuous discretizations, in particular for complex geometries. We combine our variational boundary condition formulation with unfitted Cartesian B-spline meshes and the finite cell method to simulate chemical phase segregation in a composite electrode. This example, involving coupling of chemical fields with mechanical stresses on complex domains and coupling of different materials across complex interfaces, demonstrates the flexibility of variational boundary conditions in the context of higher-order unfitted isogeometric discretizations.more » « less
An official website of the United States government

