skip to main content


Title: Towards Green Data Center Microgrids By Leveraging Data Center Loads in Providing Frequency Regulation
Award ID(s):
1952683
NSF-PAR ID:
10485685
Author(s) / Creator(s):
Publisher / Repository:
Sharif University of Technology
Date Published:
Journal Name:
Scientia Iranica
ISSN:
2345-3605
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing near-data processing (NDP)-powered architectures have demonstrated their strength for some data-intensive applications. Data center servers, however, have to serve not only data-intensive but also compute-intensive applications. An in-depth understanding of the impact of NDP on various data center applications is still needed. For example, can a compute-intensive application also benefit from NDP? In addition, current NDP techniques focus on maximizing the data processing rate by always utilizing all computing resources at all times. Is this “always running in full gear” strategy consistently beneficial for an application? To answer these questions, we first propose two reconfigurable NDP-powered servers called RANS (ReconfigurableARM-basedNDPServer) and RFNS (ReconfigurableFPGA-basedNDPServer). Next, we implement a single-engine prototype for each of them based on a conventional data center and then evaluate their effectiveness. Experimental results measured from the two prototypes are then extrapolated to estimate the properties of the two full-size reconfigurable NDP servers. Finally, several new findings are presented. For example, we find that while RANS can only benefit data-intensive applications, RFNS can offer benefits for both data-intensive and compute-intensive applications. Moreover, we find that for certain applications the reconfigurability of RANS/RFNS can deliver noticeable energy efficiency without any performance degradation.

     
    more » « less
  2. Abstract Airside economizers lower the operating cost of data centers by reducing or eliminating mechanical cooling. It, however, increases the risk of reliability degradation of information technology (IT) equipment due to contaminants. IT Equipment manufacturers have tested equipment performance and guarantee the reliability of their equipment in environments within ISA 71.04-2013 severity level G1 and the ASHRAE recommended temperature-relative humidity (RH) envelope. IT Equipment manufacturers require data center operators to meet all the specified conditions consistently before fulfilling warranty on equipment failure. To determine the reliability of electronic hardware in higher severity conditions, field data obtained from real data centers are required. In this study, a corrosion classification coupon experiment as per ISA 71.04-2013 was performed to determine the severity level of a research data center (RDC) located in an industrial area of hot and humid Dallas. The temperature-RH excursions were analyzed based on time series and weather data bin analysis using trend data for the duration of operation. After some period, a failure was recorded on two power distribution units (PDUs) located in the hot aisle. The damaged hardware and other hardware were evaluated, and cumulative corrosion damage study was carried out. The hypothetical estimation of the end of life of components is provided to determine free air-cooling hours for the site. There was no failure of even a single server operated with fresh air-cooling shows that using evaporative/free air cooling is not detrimental to IT equipment reliability. This study, however, must be repeated in other geographical locations to determine if the contamination effect is location dependent. 
    more » « less