skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regio- and enantioselective synthesis of acyclic quaternary carbons via organocatalytic addition of organoborates to (Z)-Enediketones
Abstract The chemical synthesis of molecules with closely packed atoms having their bond coordination saturated is a challenge to synthetic chemists, especially when three-dimensional control is required. The organocatalyzed asymmetric synthesis of acyclic alkenylated, alkynylated and heteroarylated quaternary carbon stereocenters via 1,4-conjugate addition is here catalyzed by 3,3´-bisperfluorotoluyl-BINOL. The highly useful products (31 examples) are produced in up to 99% yield and 97:3 er using enediketone substrates and potassium trifluoroorganoborate nucleophiles. In addition, mechanistic experiments show that the (Z)–isomer is the reactive form, ketone rotation at the site of bond formation is needed for enantioselectivity, and quaternary carbon formation is favored over tertiary. Density functional theory-based calculations show that reactivity and selectivity depend on a key n→π* donation by the unbound ketone’s oxygen lone pair to the boronate-coordinated ketone in a 5-exo-trig cyclic ouroboros transition state. Transformations of the conjugate addition products to key quaternary carbon-bearing synthetic building blocks proceed in good yield.  more » « less
Award ID(s):
2102282
PAR ID:
10485724
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Structurally complex diazo‐containing scaffolds are formed by conjugate addition to vinyl diazonium salts. The electrophile, a little studied α‐diazonium‐α,β‐unsaturated carbonyl compound, is formed at low temperature under mild conditions by treating β‐hydroxy‐α‐diazo carbonyls with Sc(OTf)3. Conjugate addition occurs selectively at the 3‐position of indole to give α‐diazo‐β‐indole carbonyls, and enoxy silanes react to give 2‐diazo‐1,4‐dicarbonyl products. These reactions result in the formation of tertiary and quaternary centers, and give products that would be otherwise difficult to form. Importantly, the diazo functional group is retained within the molecule for future manipulation. Treating an α‐diazo ester indole addition product with Rh2(OAc)4caused a rearrangement to occur to give a 2‐(1H‐indol‐3‐yl)‐2‐enoate. In the case of diazo ketone compounds, this shift occurred spontaneously on prolonged exposure to the Lewis acidic reaction conditions. 
    more » « less
  2. Abstract Phenylfuropyridone natural products from fungi exhibit a range of antibacterial and cytotoxicity activities, and can potentiate azole antifungal compounds. We elucidated the biosynthetic pathway of compounds in the citridone family through heterologous reconstitution of thepfppathway. We demonstrate that multiple members of this family can be accessed from a reactiveortho‐quinone methide (o‐QM) intermediate through electrocyclization, cycloisomerization, or conjugate addition. Formation of the quaternary carbon center in citridone B is catalyzed by an epoxide‐forming P450 enzyme, followed by carbon skeletal rearrangement. Our results showcase how nature harvests the reactivities of ano‐QM intermediate to biosynthesize complex natural products. 
    more » « less
  3. Parabens are antimicrobial additives found in a wide array of consumer products. However, the halogenated compounds formed from parabens during wastewater disinfection are a potential environmental concern. In order to identify these transformation products and investigate their mechanism of formation, a synthetic route to ethyl parabens labeled with the stable isotope carbon‐13 at specific positions within the benzene ring was developed. This efficient two‐step procedure starts from commercially available13C‐labeled phenols and involves (1) initial acylation of the phenol via a Houben–Hoesch reaction with trichloroacetonitrile followed by (2) a modified haloform reaction of the resulting trichloromethyl ketone to afford the corresponding13C‐labeled ethyl parabens in 65%–80% overall yield. The scope of the modified haloform reaction was also investigated, allowing for the synthesis of other parabens derived from primary or secondary alcohols, including13C‐ and deuterium‐labeled esters. In addition, 4‐hydroxybenzoic acid can be formed directly from the common trichloromethyl ketone intermediate upon treatment with lithium hydroxide. This protocol complements existing methods for preparing13C‐labeled paraben derivatives and offers the specific advantages of exhibiting complete regioselectivity in the Houben–Hoesch reaction (to form thepara‐disubstituted product) and avoiding the need for protecting groups in the modified haloform reaction that forms the paraben esters. 
    more » « less
  4. Carbon–carbon bond formation is one of the most important tools in synthetic organic chemists’ toolbox. It is a fundamental transformation that allows synthetic chemists to synthesize the carbon framework of complex molecules from inexpensive simple starting materials. Among the many synthetic methodologies developed for the construction of carbon–carbon bonds, organocopper reagents are one of the most reliable organometallic reagents for this purpose. The versatility of organocuprate reagents or the reactions catalyzed by organocopper reagents were demonstrated by their applications in a variety of synthetic transformations including the 1,4-conjugate addition reactions. Sulfur-containing heterocyclic compounds are a much less studied area compared to oxygen-containing heterocycles but have gained more and more attention in recent years due to their rich biological activities and widespread applications in pharmaceuticals, agrochemicals, and material science. This paper will provide a brief review on recent progress on the synthesis of an important class of sulfur-heterocycles-2-alkylthiochroman-4-ones and thioflavanones via the conjugate additions of Grignard reagents to thiochromones catalyzed by copper catalysts. Recent progress on the synthesis of 2-substituted thiochroman-4-ones via alkynylation and alkenylation of thiochromones will also be covered in this review. 
    more » « less
  5. Abstract We report hydroboration of carbodiimide and isocyanate substrates catalyzed by a cyclic carbodiphosphorane catalyst. The cyclic carbodiphosphorane outperformed the other Lewis basic carbon species tested, including other zerovalent carbon compounds, phosphorus ylides, anN‐heterocyclic carbene, and anN‐heterocyclic olefin. Hydroborations of seven carbodiimides and nine isocyanates were performed at room temperature to formN‐boryl formamidine andN‐boryl formamide products. Intermolecular competition experiments demonstrated the selective hydroboration of alkyl isocyanates over carbodiimide and ketone substrates. DFT calculations support a proposed mechanism involving activation of pinacolborane by the carbodiphosphorane catalyst, followed by hydride transfer and B−N bond formation. 
    more » « less