skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Trial Generalizability Using Observational Studies
Abstract Complementary features of randomized controlled trials (RCTs) and observational studies (OSs) can be used jointly to estimate the average treatment effect of a target population. We propose a calibration weighting estimator that enforces the covariate balance between the RCT and OS, therefore improving the trial-based estimator's generalizability. Exploiting semiparametric efficiency theory, we propose a doubly robust augmented calibration weighting estimator that achieves the efficiency bound derived under the identification assumptions. A nonparametric sieve method is provided as an alternative to the parametric approach, which enables the robust approximation of the nuisance functions and data-adaptive selection of outcome predictors for calibration. We establish asymptotic results and confirm the finite sample performances of the proposed estimators by simulation experiments and an application on the estimation of the treatment effect of adjuvant chemotherapy for early-stage non-small-cell lung patients after surgery.  more » « less
Award ID(s):
1811245
PAR ID:
10485806
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
79
Issue:
2
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 1213-1225
Size(s):
p. 1213-1225
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Propensity score weighting is a tool for causal inference to adjust for measured confounders in observational studies. In practice, data often present complex structures, such as clustering, which make propensity score modeling and estimation challenging. In addition, for clustered data, there may be unmeasured cluster-level covariates that are related to both the treatment assignment and outcome. When such unmeasured cluster-specific confounders exist and are omitted in the propensity score model, the subsequent propensity score adjustment may be biased. In this article, we propose a calibration technique for propensity score estimation under the latent ignorable treatment assignment mechanism, i. e., the treatment-outcome relationship is unconfounded given the observed covariates and the latent cluster-specific confounders. We impose novel balance constraints which imply exact balance of the observed confounders and the unobserved cluster-level confounders between the treatment groups. We show that the proposed calibrated propensity score weighting estimator is doubly robust in that it is consistent for the average treatment effect if either the propensity score model is correctly specified or the outcome follows a linear mixed effects model. Moreover, the proposed weighting method can be combined with sampling weights for an integrated solution to handle confounding and sampling designs for causal inference with clustered survey data. In simulation studies, we show that the proposed estimator is superior to other competitors. We estimate the effect of School Body Mass Index Screening on prevalence of overweight and obesity for elementary schools in Pennsylvania. 
    more » « less
  2. Abstract Calibration weighting has been widely used to correct selection biases in nonprobability sampling, missing data and causal inference. The main idea is to calibrate the biased sample to the benchmark by adjusting the subject weights. However, hard calibration can produce enormous weights when an exact calibration is enforced on a large set of extraneous covariates. This article proposes a soft calibration scheme, where the outcome and the selection indicator follow mixed-effect models. The scheme imposes an exact calibration on the fixed effects and an approximate calibration on the random effects. On the one hand, our soft calibration has an intrinsic connection with best linear unbiased prediction, which results in a more efficient estimation compared to hard calibration. On the other hand, soft calibration weighting estimation can be envisioned as penalized propensity score weight estimation, with the penalty term motivated by the mixed-effect structure. The asymptotic distribution and a valid variance estimator are derived for soft calibration. We demonstrate the superiority of the proposed estimator over other competitors in simulation studies and using a real-world data application on the effect of BMI screening on childhood obesity. 
    more » « less
  3. Abstract Structural nested mean models (SNMMs) are useful for causal inference of treatment effects in longitudinal observational studies. Most existing works assume that the data are collected at prefixed time points for all subjects, which, however, may be restrictive in practice. To deal with irregularly spaced observations, we assume a class of continuous‐time SNMMs and a martingale condition of no unmeasured confounding (NUC) to identify the causal parameters. We develop the semiparametric efficiency theory and locally efficient estimators for continuous‐time SNMMs. This task is nontrivial due to the restrictions from the NUC assumption imposed on the SNMM parameter. In the presence of ignorable censoring, we show that the complete‐case estimator is optimal among a class of weighting estimators including the inverse probability of censoring weighting estimator, and it achieves a double robustness feature in that it is consistent if at least one of the models for the potential outcome mean function and the treatment process is correctly specified. The new framework allows us to conduct causal analysis respecting the underlying continuous‐time nature of data processes. The simulation study shows that the proposed estimator outperforms existing approaches. We estimate the effect of time to initiate highly active antiretroviral therapy on the CD4 count at year 2 from the observational Acute Infection and Early Disease Research Program database. 
    more » « less
  4. Abstract We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning. These popular doubly robust estimators combine outcome modelling with balancing weights—weights that achieve covariate balance directly instead of estimating and inverting the propensity score. When the outcome and weighting models are both linear in some (possibly infinite) basis, we show that the augmented estimator is equivalent to a single linear model with coefficients that combine those of the original outcome model with those from unpenalized ordinary least-squares (OLS). Under certain choices of regularization parameters, the augmented estimator in fact collapses to the OLS estimator alone. We then extend these results to specific outcome and weighting models. We first show that the augmented estimator that uses (kernel) ridge regression for both outcome and weighting models is equivalent to a single, undersmoothed (kernel) ridge regression—implying a novel analysis of undersmoothing. When the weighting model is instead lasso-penalized, we demonstrate a familiar ‘double selection’ property. Our framework opens the black box on this increasingly popular class of estimators, bridges the gap between existing results on the semiparametric efficiency of undersmoothed and doubly robust estimators, and provides new insights into the performance of augmented balancing weights. 
    more » « less
  5. In modern large-scale observational studies, data collection constraints often result in partially labeled datasets, posing challenges for reliable causal inference, especially due to potential labeling bias and relatively small size of the labeled data. This paper introduces a decaying missing-at-random (decaying MAR) framework and associated approaches for doubly robust causal inference on treatment effects in such semi-supervised (SS) settings. This simultaneously addresses selection bias in the labeling mechanism and the extreme imbalance between labeled and unlabeled groups, bridging the gap between the standard SS and missing data literatures, while throughout allowing for confounded treatment assignment and high-dimensional confounders under appropriate sparsity conditions. To ensure robust causal conclusions, we propose a bias-reduced SS (BRSS) estimator for the average treatment effect, a type of 'model doubly robust' estimator appropriate for such settings, establishing asymptotic normality at the appropriate rate under decaying labeling propensity scores, provided that at least one nuisance model is correctly specified. Our approach also relaxes sparsity conditions beyond those required in existing methods, including standard supervised approaches. Recognizing the asymmetry between labeling and treatment mechanisms, we further introduce a de-coupled BRSS (DC-BRSS) estimator, which integrates inverse probability weighting (IPW) with bias-reducing techniques in nuisance estimation. This refinement further weakens model specification and sparsity requirements. Numerical experiments confirm the effectiveness and adaptability of our estimators in addressing labeling bias and model misspecification. 
    more » « less