The City of Atlanta, Georgia, is a fast-growing urban area with substantial economic and racial inequalities, subject to the impacts of climate change and intensifying heat extremes. Here, we analyze the magnitude, distribution, and predictors of heat exposure across the City of Atlanta, within the boundaries of Fulton County. Additionally, we evaluate the extent to which identified heat exposure is addressed in Atlanta climate resilience governance. First, land surface temperature (LST) was mapped to identify the spatial patterns of heat exposure, and potential socioeconomic and biophysical predictors of heat exposure were assessed. Second, government and city planning documents and policies were analyzed to assess whether the identified heat exposure and risks are addressed in Atlanta climate resilience planning. The average LST of Atlanta’s 305 block groups ranges from 23.7 °C (low heat exposure) in vegetated areas to 31.5 °C (high heat exposure) in developed areas across 13 summer days used to evaluate the spatial patterns of heat exposure (June–August, 2013–2019). In contrast to nationwide patterns, census block groups with larger historically marginalized populations (predominantly Black, less education, lower income) outside of Atlanta’s urban core display weaker relationships with LST (slopes ≈ 0) and are among the cooler regions of the city. Climate governance analysis revealed that although there are few strategies for heat resilience in Atlanta (
We compare high‐resolution land‐surface temperature (LST) estimates from the GOES‐16/17 (GOES) satellites to ERA‐5 Land (ERA‐5) reanalysis data across nine large US cities. We quantify the offset and find that ERA‐5 generally overestimates LST compared to GOES by 1.63°C. However, this overestimation is less pronounced in urban areas, underscoring the limitations of ERA‐5 in capturing the LST gradient between urban and non‐urban areas. We then examine three quantities: Surface Urban Heat Island Intensity (SUHII), extreme LST events, and LST exposure by population. We find that ERA‐5 does not accurately represent the diurnal variation and magnitude of SUHII in GOES. Furthermore, while ERA‐5 was on average too warm, ERA‐5 underestimates extreme heat by an average of 2.40°C. Our analysis reveals higher population exposure to high LST in the GOES data set across the cities studied. This discrepancy is especially pronounced when estimating the population fraction that are most exposed to heat.
more » « less- Award ID(s):
- 2243602
- NSF-PAR ID:
- 10485828
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract n = 12), the majority are focused on the city’s warmest region, the urban core, characterized by the city’s largest extent of impervious surface. These strategies prioritize protecting and expanding the city’s urban tree canopy, which has kept most of Atlanta’s marginalized communities under lower levels of outdoor heat exposure. Such a tree canopy can serve as an example of heat resilience for many cities across the United States and the globe. -
Abstract Here we use remotely sensed land surface temperature measurements to explore the distribution of the United States’ urban heating burden, both at high resolution (within cities or counties) and at scale (across the whole contiguous United States). While a rich literature has documented neighborhood‐level disparities in urban heat exposures in individual cities, data constraints have precluded comparisons across locations. Here, drawing on urban temperature anomalies during extreme summer surface temperature events from all 1,056 US counties with more than 10 developed census tracts, we find that the poorest tracts (and those with lowest average education levels) within a county are significantly hotter than the richest (and more educated) neighborhoods for 76% of these counties (54% for education); we also find that neighborhoods with higher Black, Hispanic, and Asian population shares are hotter than the more White, non‐Hispanic areas in each county. This holds in counties with both large and small spreads in these population shares, and for 71% of all counties the significant racial urban heat disparities persist even when adjusting for income. Although individual locations have different histories that have contributed to race‐ and class‐based geographies, we find that the physical features of the urban environments driving these surface heat exposure gradients are fairly uniform across the country. Systematically, the disproportionate heat surface exposures faced by minority communities are due to more built‐up neighborhoods, less vegetation, and—to a lesser extent—higher population density.
-
Many cities are experiencing more frequent extreme heat during hot summers. With the rise of global temperature, the thermal comfort in urban areas become even worse. Quantitative information of the spatial distributions of urban heat has become increasingly important for resilience and adaptation to climate change in cities. This study compares satellite-derived land surface temperature (LST) and urban microclimate modeling-based mean radiant temperature (Tmrt) for mapping the urban heat distributions in Philadelphia, Pennsylvania, USA. The LST was estimated based on Landsat 8 thermal imagery with a spatial resolution of around 100 m, while the Tmrt was simulated based on high resolution LiDAR and national aerial imagery program multispectral aerial imageries with a spatial resolution of 1 m. Result shows that both LST and Tmrt show a similar general pattern of the urban heat across the study area, while the Tmrt presents much more details of the heat variations street by street and neighborhood by neighborhood. The LST tends to have a stronger relationship with the Tmrt on building roofs, which are usually not the place for human activities. This studyprovides evidence for choosing more appropriate metrics in urban heat-related studies.more » « less
-
High-quality temperature data at a finer spatio-temporal scale is critical for analyzing the risk of heat exposure and hazards in urban environments. The variability of urban landscapes makes cities a challenging environment for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts; first, the spatio-temporal granularities are too coarse, and second, the inability to track the ambient air temperature (AAT) instead of land surface temperature (LST). Overcoming these limitations requires developing models for mapping the variability in heat exposure in urban environments. We investigated an integrated approach for mapping urban heat hazards by harnessing a diverse set of high-resolution measurements, including both ground-based and satellite-based temperature data. We mounted vehicle-borne mobile sensors on city buses to collect high-frequency temperature data throughout 2018 and 2019. Our research also incorporated key biophysical parameters and Landsat 8 LST data into Random Forest regression modeling to map the hyperlocal variability of heat hazard over areas not covered by the buses. The vehicle-borne temperature sensor data showed large temperature differences within the city, with the largest variations of up to 10 °C and morning-afternoon diurnal changes at a magnitude around 20 °C. Random Forest modeling on noontime (11:30 am – 12:30 pm) data to predict AAT produced accurate results with a mean absolute error of 0.29 °C and successfully showcased the enhanced granularity in urban heat hazard mapping. These maps revealed well-defined hyperlocal variabilities in AAT, which were not evident with other research approaches. Urban core and dense residential areas revealed larger than 5 °C AAT differences from their nearby green spaces. The sensing framework developed in this study can be easily implemented in other urban areas, and findings from this study will be beneficial in understanding the heat vulnerabilities of individual communities. It can be used by the local government to devise targeted hazard mitigation efforts such as increasing green space, developing better heatsafety policies, and exposure warning for workers.more » « less
-
Abstract Understanding the relationship between spatial structures of cities and environmental hazard exposures is essential for urban health and sustainability planning. However, a critical knowledge gap exists in terms of the extent to which socio-spatial networks shaped by human mobility exacerbate or alleviate urban heat exposures of populations in cities. In this study, we utilize location-based data to construct human mobility networks in twenty metropolitan areas in the U.S. The human mobility networks are analyzed in conjunction with the urban heat characteristics of spatial areas. We identify areas with high and low urban heat exposure and evaluate visitation patterns of populations residing in high and low urban heat areas to other spatial areas with similar and dissimilar urban heat exposure. The results reveal the presence of urban heat traps in the majority of the studied metropolitan areas, wherein populations residing in high-heat exposure areas primarily visited other high-heat exposure zones. Specifically, cities such as Los Angeles, Boston, and Chicago were particularly pronounced as urban heat traps. The results also show a small percentage of human mobility to produce urban heat escalation and heat escapes. The findings from this study provide a better understanding of urban heat exposure in cities based on patterns of human mobility. These findings contribute to a broader understanding of the intersection of human network dynamics and environmental hazard exposures in cities to inform more integrated urban design and planning to promote health and sustainability.