- Award ID(s):
- 2314709
- NSF-PAR ID:
- 10519800
- Publisher / Repository:
- Elsvier
- Date Published:
- Journal Name:
- Urban Climate
- Volume:
- 51
- Issue:
- C
- ISSN:
- 2212-0955
- Page Range / eLocation ID:
- 101615
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this study, we investigate the compatibility of specific vulnerability indicators and heat exposure data and the suitability of spatial temperature-related data at a range of resolutions, to represent spatial temperature variations within cities using data from Atlanta, Georgia. For this purpose, we include various types of known and theoretically based vulnerability indicators such as specific street-level landscape features and urban form metrics, population-based and zone-based variables as predictors, and different measures of temperature, including air temperature (as vector-based data), land surface temperature (at resolution ranges from 30 m to 305 m), and mean radiant temperature (at resolution ranges from 1 m to 39 m) as dependent variables. Using regression analysis, we examine how different sets of predictors and spatial resolutions can explain spatial heat variation. Our findings suggest that the lower resolution of land surface temperature data, up to 152 m, and mean radiant temperature data, up to 15 m, may still satisfactorily represent spatial urban temperature variation caused by landscape elements. The results of this study have important implications for heat-related policies and planning by providing insights into the appropriate sets of data and relevant resolution of temperature measurements for representing spatial urban heat variations.more » « less
-
The urban heat island (UHI) effect, the phenomenon by which cities are warmer than rural surroundings, is increasingly important in a rapidly urbanizing and warming world, but fine-scale differences in temperature within cities are difficult to observe accurately. Networks of air temperature (Tair) sensors rarely offer the spatial density needed to capture neighborhood-level disparities in warming, while satellite measures of land surface temperature (LST) do not reflect the air temperatures that people physically experience. This analysis combines both Tair measurements recorded by a spatially-dense stationary sensor network in Dane County, Wisconsin, and remotely-sensed measurements of LST over the same area—to improve the use and interpretation of LST in UHI studies. The data analyzed span three summer months (June, July, and August) and eight years (2012–2019). Overall, Tair and LST displayed greater agreement in spatial distribution than in magnitude. The relationship between day of the year and correlation was fit to a parabolic curve (R2 = 0.76, p = 0.0002) that peaked in late July. The seasonal evolution in the relationship between Tair and LST, along with particularly high variability in LST across agricultural land cover suggest that plant phenology contributes to a seasonally varying relationship between Tair and LST measurements of the UHI.more » « less
-
Research about urban local climate and urban heat island often relies on land surface temperature (LST) data to characterize the distribution of temperature near the surface. Although using remotely sensed data for such work has the advantage of continuous spatial coverage at regular temporal intervals, it is recognized that surface temperature is not an ideal proxy for air temperature (AT). This study's goal is to develop a spatiotemporal model revealing the relationship between LST and AT within the complexities of the urban environment. A mobile weather monitoring unit was used to collect spatially-explicit fine-scale AT data while Landsat 8 and 9 passed overhead collecting LST data. A spatiotemporal model of the relationship between LST and AT in Philadelphia was constructed with this data utilizing basis functions to account for spatial and temporal autocorrelation. The spatiotemporal model results show a strong relationship between LST and AT and indicate that it is possible to predict fine scale AT (120 m) using remotely sensed LST in an urban context (r-squared = 0.99, RMSE = 0.89 ◦C). The spatiotemporal model outperforms models that do not account for spatial and temporal autocorrelation, highlighting the importance of considering these dependencies in temperature modeling. City-wide AT predictions were generated for Philadelphia demonstrating the ability of the model to improve understanding of local urban climate.more » « less
-
Surface temperature influences human health directly and alters the biodiversity and productivity of the environment. While previous research has identified that the composition of urban landscapes influences the physical properties of the environment such as surface temperature, a generalizable and flexible framework is needed that can be used to compare cities across time and space. This study employs the Structure of Urban Landscapes (STURLA) classification combined with remote sensing of New York City’s land surface temperature (LST). These are then linked using machine learning and statistical modeling to identify how greenspace and the built environment influence urban surface temperature. Further, changes in urban structure are then connected to changes in LST over time. It was observed that areas with urban units composed of largely the built environment hosted the hottest temperatures while those with vegetation and water were coolest. Likewise, this is reinforced by borough-level spatial differences in both urban structure and heat. Comparison of these relationships over the period between 2008 and 2017 identified changes in surface temperature that are likely due to the changes in the presence of water, low-rise buildings, and pavement across the city. This research reinforces how human alteration of the environment changes LST and offers units of analysis that can be used for research and urban planning.more » « less
-
Abstract We compare high‐resolution land‐surface temperature (LST) estimates from the GOES‐16/17 (GOES) satellites to ERA‐5 Land (ERA‐5) reanalysis data across nine large US cities. We quantify the offset and find that ERA‐5 generally overestimates LST compared to GOES by 1.63°C. However, this overestimation is less pronounced in urban areas, underscoring the limitations of ERA‐5 in capturing the LST gradient between urban and non‐urban areas. We then examine three quantities: Surface Urban Heat Island Intensity (SUHII), extreme LST events, and LST exposure by population. We find that ERA‐5 does not accurately represent the diurnal variation and magnitude of SUHII in GOES. Furthermore, while ERA‐5 was on average too warm, ERA‐5 underestimates extreme heat by an average of 2.40°C. Our analysis reveals higher population exposure to high LST in the GOES data set across the cities studied. This discrepancy is especially pronounced when estimating the population fraction that are most exposed to heat.