Speckle patterns have been used widely in imaging techniques such as ghost imaging, dynamic speckle illumination microscopy, structured illumination microscopy, and photoacoustic fluctuation imaging. Recent advances in the ability to control the statistical properties of speckles has enabled the customization of speckle patterns for specific imaging applications. In this work, we design and create special speckle patterns for parallelized nonlinear pattern-illumination microscopy based on fluorescence photoswitching. We present a proof-of-principle experimental demonstration where we obtain a spatial resolution three times higher than the diffraction limit of the illumination optics in our setup. Furthermore, we show that tailored speckles vastly outperform standard speckles. Our work establishes that customized speckles are a potent tool in parallelized super-resolution microscopy.
more »
« less
Efficient Monte Carlo simulation of spatiotemporal speckles and their correlations
When viewed under coherent illumination, scattering materials such as tissue exhibit highly varying speckle patterns. Despite their noise-like appearance, the temporal and spatial variations of these speckles, resulting from internal tissue dynamics and/or external perturbation of the illumination, carry strong statistical information that is highly valuable for tissue analysis. The full practical applicability of these statistics is still hindered by the difficulty of simulating the speckles and their statistics. This paper proposes an efficient Monte Carlo framework that can efficiently sample physically correct speckles and estimate their covariances. While Monte Carlo algorithms were originally derived for incoherent illumination, our approach simulates complex-valued speckle fields. We compare the statistics of our speckle fields against those produced by an exact numerical wave solver and show a precise agreement, while our simulator is a few orders of magnitude faster and scales to much larger scenes. We also show that the simulator predictions accurately align with existing analytical models and simulation strategies, which currently address various partial settings of the general problem.
more »
« less
- Award ID(s):
- 2008123
- PAR ID:
- 10485843
- Publisher / Repository:
- Optica
- Date Published:
- Journal Name:
- Optica
- Volume:
- 10
- Issue:
- 8
- ISSN:
- 2334-2536
- Page Range / eLocation ID:
- 1081
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We exploit memory effect correlations in speckles for the imaging of incoherent fluorescent sources behind scattering tissue. These correlations are often weak when imaging thick scattering tissues and complex illumination patterns, both of which greatly limit the practicality of associated techniques. In this work, we introduce a spatial light modulator between the tissue sample and the imaging sensor and capture multiple modulations of the speckle pattern. We show that by correctly designing the modulation patterns and the associated reconstruction algorithm, statistical correlations in the measurements can be greatly enhanced. We exploit this to demonstrate the reconstruction of mega-pixel sized fluorescent patterns behind the scattering tissue.more » « less
-
Nuclear speckles are nuclear membraneless organelles in higher eukaryotic cells playing a vital role in gene expression. Using an in situ reverse transcription–based sequencing method, we study nuclear speckle–associated human transcripts. Our data indicate the existence of three gene groups whose transcripts demonstrate different speckle localization properties: stably enriched in nuclear speckles, transiently enriched in speckles at the pre–messenger RNA stage, and not enriched. We find that stably enriched transcripts contain inefficiently excised introns and that disruption of nuclear speckles specifically affects splicing of speckle-enriched transcripts. We further reveal RNA sequence features contributing to transcript speckle localization, indicating a tight interplay between transcript speckle enrichment, genome organization, and splicing efficiency. Collectively, our data highlight a role of nuclear speckles in both co- and posttranscriptional splicing regulation. Last, we show that genes with stably enriched transcripts are over-represented among genes with heat shock–up-regulated intron retention, hinting at a connection between speckle localization and cellular stress response.more » « less
-
Laser speckle contrast imaging is widely used in clinical studies to monitor blood flow distribution. Speckle contrast tomography, similar to diffuse optical tomography, extends speckle contrast imaging to provide deep tissue blood flow information. However, the current speckle contrast tomography techniques suffer from poor spatial resolution and involve both computation and memory intensive reconstruction algorithms. In this work, we present SpeckleCam, a camera-based system to reconstruct high resolution 3D blood flow distribution deep inside the skin. Our approach replaces the traditional forward model using diffuse approximations with Monte-Carlo simulations-based convolutional forward model, which enables us to develop an improved deep tissue blood flow reconstruction algorithm. We show that our proposed approach can recover complex structures up to 6 mm deep inside a tissue-like scattering medium in the reflection geometry. We also conduct human experiments to demonstrate that our approach can detect reduced flow in major blood vessels during vascular occlusion.more » « less
-
RNA molecules often play critical roles in assisting the formation of membraneless organelles in eukaryotic cells. Yet, little is known about the organization of RNAs within membraneless organelles. Here, using super-resolution imaging and nuclear speckles as a model system, we demonstrate that different sequence domains of RNA transcripts exhibit differential spatial distributions within speckles. Specifically, we image transcripts containing a region enriched in binding motifs of serine/arginine-rich (SR) proteins and another region enriched in binding motifs of heterogeneous nuclear ribonucleoproteins (hnRNPs). We show that these transcripts localize to the outer shell of speckles, with the SR motif-rich region localizing closer to the speckle center relative to the hnRNP motif-rich region. Further, we identify that this intra-speckle RNA organization is driven by the strength of RNA-protein interactions inside and outside speckles. Our results hint at novel functional roles of nuclear speckles and likely other membraneless organelles in organizing RNA substrates for biochemical reactions.more » « less
An official website of the United States government

