skip to main content


This content will become publicly available on January 9, 2025

Title: Turning Normal to Abnormal: Reversing CO 2 /C2‐Hydrocarbon Selectivity in HKUST‐1
Abstract

Metal–organic frameworks (MOFs) can efficiently purify hydrocarbons from CO2, but their rapid saturation, driven by preferential hydrocarbon adsorption, requires energy‐intensive adsorption–desorption processes. To address these challenges, an innovative approach is developed, enabling control over MOF flexibility through densification and defect engineering, resulting in an intriguing inverse CO2/C2 hydrocarbon selectivity. In this study, the densification process induces the shearing of the crystal lattice and contraction of pores in a defective CuBTC MOF. These changes have led to a remarkable transformation in selectivity, where the originally hydrocarbon‐selective CuBTC MOF becomes CO2‐selective. The selectivity values for densified CuBTC are significantly reversed when compared to its powder form, with notable improvements observed in CO2/C2H6(4416 vs 0.61), CO2/C2H4(15 vs 0.28), and CO2/C2H2(4 vs 0.2). The densified material shows impressive separation, regeneration, and recyclability during dynamic breakthrough experiments with complex quinary gas mixtures. Simulation studies indicate faster CO2passage through the tetragonal structure of densified CuBTC compared to C2H2. Experimental kinetic diffusion studies confirm accelerated CO2diffusion over hydrocarbons in the densified MOF, attributed to its small pore window and minimal interparticle voids. This research introduces a promising strategy for refining existing and future MOF materials, enhancing their separation performance.

 
more » « less
Award ID(s):
2154882
NSF-PAR ID:
10485850
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although many porous materials, including metal–organic frameworks (MOFs), have been reported to selectively adsorb C2H2in C2H2/CO2separation processes, CO2‐selective sorbents are much less common. Here, we report the remarkable performance ofMFU‐4(Zn5Cl4(bbta)3, bbta=benzo‐1,2,4,5‐bistriazolate) toward inverse CO2/C2H2separation. The MOF facilitates kinetic separation of CO2from C2H2, enabling the generation of high purity C2H2(>98 %) with good productivity in dynamic breakthrough experiments. Adsorption kinetics measurements and computational studies show C2H2is excluded fromMFU‐4by narrow pore windows formed by Zn−Cl groups. Postsynthetic F/Clligand exchange was used to synthesize an analogue (MFU‐4‐F) with expanded pore apertures, resulting in equilibrium C2H2/CO2separation with reversed selectivity compared toMFU‐4.MFU‐4‐Falso exhibits a remarkably high C2H2adsorption capacity (6.7 mmol g−1), allowing fuel grade C2H2(98 % purity) to be harvested from C2H2/CO2mixtures by room temperature desorption.

     
    more » « less
  2. Abstract

    Although many porous materials, including metal–organic frameworks (MOFs), have been reported to selectively adsorb C2H2in C2H2/CO2separation processes, CO2‐selective sorbents are much less common. Here, we report the remarkable performance ofMFU‐4(Zn5Cl4(bbta)3, bbta=benzo‐1,2,4,5‐bistriazolate) toward inverse CO2/C2H2separation. The MOF facilitates kinetic separation of CO2from C2H2, enabling the generation of high purity C2H2(>98 %) with good productivity in dynamic breakthrough experiments. Adsorption kinetics measurements and computational studies show C2H2is excluded fromMFU‐4by narrow pore windows formed by Zn−Cl groups. Postsynthetic F/Clligand exchange was used to synthesize an analogue (MFU‐4‐F) with expanded pore apertures, resulting in equilibrium C2H2/CO2separation with reversed selectivity compared toMFU‐4.MFU‐4‐Falso exhibits a remarkably high C2H2adsorption capacity (6.7 mmol g−1), allowing fuel grade C2H2(98 % purity) to be harvested from C2H2/CO2mixtures by room temperature desorption.

     
    more » « less
  3. Regulating the selectivity toward a target hydrocarbon product is still the focus of CO2electroreduction. Here, we discover that the original surface Cu species in Cu gas‐diffusion electrodes plays a more important role than the surface roughness, local pH, and facet in governing the selectivity toward C1or C2hydrocarbons. The selectivity toward C2H4progressively increases, while CH4decreases steadily upon lowering the Cu oxidation species fraction. At a relatively low electrodeposition voltage of 1.5 V, the Cu gas‐diffusion electrode with the highest Cuδ+/Cu0ratio favors the pathways of hydrogenation to form CH4with maximum Faradaic efficiency of 65.4% and partial current density of 228 mA cm−2at −0.83 V vs RHE. At 2.0 V, the Cu gas‐diffusion electrode with the lowest Cuδ+/Cu0ratio prefers C–C coupling to form C2+products with Faradaic efficiency topping 80.1% at −0.75 V vs RHE, where the Faradaic efficiency of C2H4accounts for 46.4% and the partial current density of C2H4achieves 279 mA cm−2. This work demonstrates that the selectivity from CH4to C2H4is switchable by tuning surface Cu species composition of Cu gas‐diffusion electrodes.

     
    more » « less
  4. Abstract

    Efficient separation of C2H4/C2H6mixtures is of paramount importance in the petrochemical industry. Nanoporous materials, especially metal-organic frameworks (MOFs), may serve the purpose owing to their tailorable structures and pore geometries. In this work, we propose a computational framework for high-throughput screening and inverse design of high-performance MOFs for adsorption and membrane processes. High-throughput screening of the computational-ready, experimental (CoRE 2019) MOF database leads to materials with exceptionally high ethane-selective adsorption selectivity (LUDLAZ: 7.68) and ethene-selective membrane selectivity (EBINUA02: 2167.3). Moreover, the inverse design enables the exploration of broader chemical space and identification of MOF structures with even higher membrane selectivity and permeability. In addition, a relative membrane performance score (rMPS) has been formulated to evaluate the overall membrane performance relative to the Robeson boundary. The computational framework offers guidelines for the design of MOFs and is generically applicable to materials discovery for gas storage and separation.

     
    more » « less
  5. Abstract

    Recent emphasis on carbon dioxide utilization has necessitated the exploration of different catalyst compositions other than copper-based systems that can significantly improve the activity and selectivity towards specific CO2 reduction products at low applied potential. In this study, a binary CoTe has been reported as an efficient electrocatalyst for CO2reduction in aqueous medium under ambient conditions at neutral pH. CoTe showed high Faradaic efficiency and selectivity of 86.83 and 75%, respectively, for acetic acid at very low potential of − 0.25 V vs RHE. More intriguingly, C1 products like formic acid was formed preferentially at slightly higher applied potential achieving high formation rate of 547.24 μmol cm−2 h−1 at − 1.1 V vs RHE. CoTe showed better CO2RR activity when compared with Co3O4, which can be attributed to the enhanced electrochemical activity of the catalytically active transition metal center as well as improved intermediate adsorption on the catalyst surface. While reduced anion electronegativity and improved lattice covalency in tellurides enhance the electrochemical activity of Co, high d-electron density improves the intermediate CO adsorption on the catalyst site leading to CO2reduction at lower applied potential and high selectivity for C2products. CoTe also shows stable CO2RR catalytic activity for 50 h and low Tafel slope (50.3 mV dec–1) indicating faster reaction kinetics and robust functionality. Selective formation of value-added C2products with low energy expense can make these catalysts potentially viable for integration with other CO2capture technologies thereby, helping to close the carbon loop.

     
    more » « less