skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Turning Normal to Abnormal: Reversing CO 2 /C2‐Hydrocarbon Selectivity in HKUST‐1
Abstract Metal–organic frameworks (MOFs) can efficiently purify hydrocarbons from CO2, but their rapid saturation, driven by preferential hydrocarbon adsorption, requires energy‐intensive adsorption–desorption processes. To address these challenges, an innovative approach is developed, enabling control over MOF flexibility through densification and defect engineering, resulting in an intriguing inverse CO2/C2 hydrocarbon selectivity. In this study, the densification process induces the shearing of the crystal lattice and contraction of pores in a defective CuBTC MOF. These changes have led to a remarkable transformation in selectivity, where the originally hydrocarbon‐selective CuBTC MOF becomes CO2‐selective. The selectivity values for densified CuBTC are significantly reversed when compared to its powder form, with notable improvements observed in CO2/C2H6(4416 vs 0.61), CO2/C2H4(15 vs 0.28), and CO2/C2H2(4 vs 0.2). The densified material shows impressive separation, regeneration, and recyclability during dynamic breakthrough experiments with complex quinary gas mixtures. Simulation studies indicate faster CO2passage through the tetragonal structure of densified CuBTC compared to C2H2. Experimental kinetic diffusion studies confirm accelerated CO2diffusion over hydrocarbons in the densified MOF, attributed to its small pore window and minimal interparticle voids. This research introduces a promising strategy for refining existing and future MOF materials, enhancing their separation performance.  more » « less
Award ID(s):
2154882
PAR ID:
10485850
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
19
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Regulating the selectivity toward a target hydrocarbon product is still the focus of CO2electroreduction. Here, we discover that the original surface Cu species in Cu gas‐diffusion electrodes plays a more important role than the surface roughness, local pH, and facet in governing the selectivity toward C1or C2hydrocarbons. The selectivity toward C2H4progressively increases, while CH4decreases steadily upon lowering the Cu oxidation species fraction. At a relatively low electrodeposition voltage of 1.5 V, the Cu gas‐diffusion electrode with the highest Cuδ+/Cu0ratio favors the pathways of hydrogenation to form CH4with maximum Faradaic efficiency of 65.4% and partial current density of 228 mA cm−2at −0.83 V vs RHE. At 2.0 V, the Cu gas‐diffusion electrode with the lowest Cuδ+/Cu0ratio prefers C–C coupling to form C2+products with Faradaic efficiency topping 80.1% at −0.75 V vs RHE, where the Faradaic efficiency of C2H4accounts for 46.4% and the partial current density of C2H4achieves 279 mA cm−2. This work demonstrates that the selectivity from CH4to C2H4is switchable by tuning surface Cu species composition of Cu gas‐diffusion electrodes. 
    more » « less
  2. Abstract Efficient separation of C2H4/C2H6mixtures is of paramount importance in the petrochemical industry. Nanoporous materials, especially metal-organic frameworks (MOFs), may serve the purpose owing to their tailorable structures and pore geometries. In this work, we propose a computational framework for high-throughput screening and inverse design of high-performance MOFs for adsorption and membrane processes. High-throughput screening of the computational-ready, experimental (CoRE 2019) MOF database leads to materials with exceptionally high ethane-selective adsorption selectivity (LUDLAZ: 7.68) and ethene-selective membrane selectivity (EBINUA02: 2167.3). Moreover, the inverse design enables the exploration of broader chemical space and identification of MOF structures with even higher membrane selectivity and permeability. In addition, a relative membrane performance score (rMPS) has been formulated to evaluate the overall membrane performance relative to the Robeson boundary. The computational framework offers guidelines for the design of MOFs and is generically applicable to materials discovery for gas storage and separation. 
    more » « less
  3. More than 90% of the world’s hydrogen (H2) is produced from fossil fuel sources, which requires energy-intensive separation and purification to produce high-purity H2fuel and to capture the carbon dioxide (CO2) by-product. While membranes can decarbonize H2/CO2separation, their moderate H2/CO2selectivity requires secondary H2purification by pressure swing adsorption. Here, we report hyperselective carbon molecular sieve hollow fiber membranes showing H2/CO2selectivity exceeding 7000 under mixture permeation at 150°C, which is almost 30 times higher than the most selective nonmetallic membrane reported in the literature. The membrane is able to maintain an ultrahigh H2/CO2selectivity over 1400 under mixture permeation at 400°C. Pore structure characterization suggests that highly refined ultramicropores are responsible for effectively discriminating the closely sized H2and CO2molecules in the hyperselective carbon molecular sieve membrane. Modeling shows that the unprecedented H2/CO2selectivity will potentially allow one-step enrichment of fuel-grade H2from shifted syngas for decarbonized H2production. 
    more » « less
  4. A series of N-doped porous carbons with different textural properties and N contents was prepared from a mixture of algae and glucose and their capability for the separation of CO 2 /CH 4 , C 2 H 6 /CH 4 , and CO 2 /H 2 binary mixtures under different conditions (bulk pressure, mixture composition, and temperature) were subsequently assessed in great detail. It was observed that the gas (C 2 H 6 , CO 2 , CH 4 , and H 2 ) adsorption capacity at different pressure regions was primarily governed by different adsorbent parameters (N level, narrow micropore volume, and BET specific surface area). More interestingly, it was found that N-doping can selectively enhance the heats of adsorption of C 2 H 6 and CO 2 , while it had a negligible effect on those of CH 4 and H 2 . The adsorption equilibrium selectivities for separating C 2 H 6 /CH 4 , CO 2 /CH 4 , and CO 2 /H 2 gas mixture pairs on the porous carbons were predicted using the ideal adsorbed solution theory (IAST) based on pure-component adsorption isotherms. In particular, sample NAHA-1 exhibited by far the best performance (in terms of gas adsorption capacity and selectivity) reported for porous carbons for the separation of these three binary mixtures. More significantly, NAHA-1 carbon outperforms many of its counterparts ( e.g. MOFs and zeolites), emphasizing the important role of carbonaceous adsorbents in gas purification and separation. 
    more » « less
  5. Abstract Trigonal planar M3(O/OH) trimers are among the most important clusters in inorganic chemistry and are the foundational features of multiple high‐impact MOF platforms. Here we introduce a concept called isoreticular cluster series and demonstrate that M3(O/OH), as the first member of a supertrimer series, can be combined with a higher hierarchical member (double‐deck trimer here) to advance isoreticular chemistry. We report here an isoreticular series of pore‐space‐partitioned MOFs called M3M6pacsmade from co‐assembly between M3single‐deck trimer and M3x2double‐deck trimer. Important factors were identified on this multi‐modular MOF platform to guide optimization of each module, which enables the phase selection of M3M6pacsby overcoming the formation of previously‐always‐observed same‐cluster phases. The newpacsmaterials exhibit high surface area and high uptake capacity for CO2and small hydrocarbons, as well as selective adsorption properties relevant to separation of industrially important mixtures such as C2H2/CO2and C2H2/C2H4. Furthermore, new M3M6pacsmaterials show electrocatalytic properties with high activity. 
    more » « less