Abstract The GAMA J0913−0107 system is a rare conjunction of a submillimeter galaxy (SMG) atz≈ 2.7 and two background QSOs with projected separations <200 kpc. Previous high-resolution QSO absorption-line spectroscopy has revealed high Hicolumn density, extremely metal-poor (∼1% solar) gas streams in the circumgalactic medium of the SMG. Here we present deep optical integral-field spectroscopy of the system with the Keck Cosmic Web Imager (KCWI). Reaching a 2σsurface brightness limit ≈10−19erg s−1cm−2arcsec−2with ∼2 hr of integration time, we detect a filamentary Lyαnebula stretching ∼180 kpc from the SMG intercepting both QSO sightlines. This Lyαfilament may correspond to the same cool gas stream penetrating through the hot halo seen in the absorption. In contrast to Lyαnebulae around QSOs, there is no obvious local source for photoionization due to the massive dust content. While uncertain, we consider the possibility that the nebula is ionized by shocks induced by the infall, obscured star formation, and/or a boosted UV background. The SMG–QSOs conjunction multiplied the efficiency of the KCWI observations, allowing a direct comparison of Lyαnebulae in two distinct environments. We find that the nebulae around the QSOs are much brighter and show steeper surface brightness profiles than the SMG nebula. This is consistent with the additional photoionization and Lyαscattering provided by the QSOs. While illustrating the challenges of detecting Lyαnebulae around SMGs, our work also demonstrates that important insights can be gained from comparative studies of high-zLyαnebulae.
more »
« less
Mapping the Morphology and Kinematics of a Lyα-selected Nebula at z = 3.15 with MUSE
Abstract Recent wide-field integral-field spectroscopy has revealed the detailed properties of high-redshift Lyαnebulae, most often targeted due to the presence of an active galactic nucleus (AGN). Here, we use VLT/MUSE to resolve the morphology and kinematics of a nebula initially identified due to strong Lyαemission atz∼ 3.2 (LABn06). Our observations reveal a two-lobed Lyαnebula, at least ∼173 pkpc in diameter, with a light-weighted centroid near a mid-infrared source (within ≈17.2 pkpc) that appears to host an obscured AGN. The Lyαemission near the AGN is also coincident in velocity with the kinematic center of the nebula, suggesting that the nebula is both morphologically and kinematically centered on the AGN. Compared to AGN-selected Lyαnebulae, the surface-brightness profile of this nebula follows a typical exponential profile at large radii (>25 pkpc), although at small radii, the profile shows an unusual dip at the location of the AGN. The kinematics and asymmetry are similar to, and the Civand Heiiupper limits are consistent with, other AGN-powered Lyαnebulae. Double-peaked and asymmetric line profiles suggest that Lyαresonant scattering may be important in this nebula. These results support the picture of the AGN being responsible for powering a Lyαnebula that is oriented roughly in the plane of the sky. Further observations will explore whether the central surface-brightness depression is indicative of either an unusual gas or dust distribution or variation in the ionizing output of the AGN over time.
more »
« less
- Award ID(s):
- 1813016
- PAR ID:
- 10485913
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 923
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 252
- Size(s):
- Article No. 252
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT This paper presents a detailed analysis of two giant Lyman-alpha (Ly α) arcs detected near galaxies at z = 3.038 and z = 3.754 lensed by the massive cluster MACS 1206−0847 (z = 0.44). The Ly α nebulae revealed in deep MUSE observations exhibit a double-peaked profile with a dominant red peak, indicating expansion/outflowing motions. One of the arcs stretches over 1 arcmin around the cluster Einstein radius, resolving the velocity field of the line-emitting gas on kpc scales around three star-forming galaxies of 0.3–$$1.6\, L_*$$ at z = 3.038. The second arc spans 15 arcsec in size, roughly centred around two low-mass Ly α emitters of $$\approx 0.03\, L_*$$ at z = 3.754. All three galaxies in the z = 3.038 group exhibit prominent damped Ly α absorption (DLA) and several metal absorption lines, in addition to nebular emission lines such as $$\hbox{He ii}$$\lambda \, 1640$$ and C iii]λλ1906, 1908. Extended Ly α emission appears to emerge from star-forming regions with suppressed surface brightness at the centre of each galaxy. Significant spatial variations in the Ly α line profile are observed which, when unaccounted for in the integrated line, leads to biased constraints for the underlying gas kinematics. The observed spatial variations indicate the presence of a steep velocity gradient in a continuous flow of high column density gas from star-forming regions into a low-density halo environment. A detailed inspection of available galaxy spectra shows no evidence of AGN activity in the galaxies, and the observed Ly α signals are primarily explained by resonant scattering. The study presented in this paper shows that spatially resolved imaging spectroscopy provides the most detailed insights yet into the kinematics of galactic superwinds associated with star-forming galaxies.more » « less
-
Abstract To understand the mechanism behind high-zLyαnebulae, we simulate the scattering of Lyαin a Hihalo about a central Lyαsource. For the first time, we consider both smooth and clumpy distributions of halo gas, as well as a range of outflow speeds, total Hicolumn densities, Hispatial concentrations, and central source galaxies (e.g., with Lyαline widths corresponding to those typical of active galactic nucleus or star-forming galaxies). We compute the spatial-frequency diffusion and the polarization of the Lyαphotons scattered by atomic hydrogen. Our scattering-only model reproduces the typical size of Lyαnebulae (∼100 kpc) at total column densitiesNH I≥ 1020cm−2and predicts a range of positive, flat, and negative polarization radial gradients. We also find two general classes of Lyαnebula morphologies: with and without bright cores. Cores are seen whenNH Iis low, i.e., when the central source is directly visible, and are associated with a polarization jump, a steep increase in the polarization radial profile just outside the halo center. Of all the parameters tested in our smooth or clumpy medium model,NH Idominates the trends. The radial behaviors of the Lyαsurface brightness, spectral line shape, and polarization in the clumpy model with covering factorfc≳ 5 approach those of the smooth model at the sameNH I. A clumpy medium with highNH Iand lowfc≲ 2 generates Lyαfeatures via scattering that the smooth model cannot: a bright core, symmetric line profile, and polarization jump.more » « less
-
Abstract It has been well established in the local universe that galaxy properties differ based on the large-scale environment in which they reside. As luminous Lyαnebulae have been shown to trace overdense environments atz∼ 2–3, comparing the properties of galaxies within Lyαnebulae systems to those in the field can provide insight into how and when locally observed trends between galaxy properties and environment emerged. Six Lyαnebulae were discovered atz∼ 2.3 in a blind search of the GOODS-S extragalactic field, a region also covered by the 3D-HST spectroscopic survey. Utilizing 3D-HST data, we identified 86 galaxies in the vicinity of these nebulae and used statistical tests to compare their physical properties to galaxies elsewhere in the field. Galaxies lying within 320 proper kpc of a Lyαnebula are roughly half a magnitude brighter than those in the field, with higher stellar masses, higher star formation rates, and larger effective radii. Even when considering the effects of sample incompleteness, our study suggests that galaxies in overdensities atz∼ 2.3 traced by Lyαnebulae are being influenced by their environment. Furthermore, Lyα-nebula-associated galaxies lie on the same main sequence of star formation as field galaxies but have a larger proportion of high-mass galaxies, consistent with the idea that galaxy evolution is accelerated in rich environments. Expanded surveys for Lyαnebulae in other deep extragalactic fields and galaxy spectroscopic follow-up with the James Webb Space Telescope (JWST) will better constrain the demographics of Lyα-nebula-associated galaxies.more » « less
-
Abstract We present Keck Cosmic Web Imager integral field observations of extended Lyαemission in the circumgalactic medium of 27 typical star-forming galaxies atz∼ 2, drawn from the Multi-Object Spectrometer for Infra-Red Exploration (MOSFIRE) Deep Evolution Field (MOSDEF) survey. Using composite spectra in two bins of star formation rate (SFR), star formation rate surface density (ΣSFR), and other galactic properties, we measure spatial variations in the Lyαprofile across three regions in the Lyαhalo. We find single-peaked, redshifted profiles are ubiquitous within a central 7 kpc radius region. Further out in the halo (7–14 and 14–21 kpc), the Lyαprofile of the resonantly scattered emission exhibits more diversity, either transitioning to a double-peaked profile or remaining single peaked across the halo. We find a shorter scale length of the Lyαhalo surface brightness profile for composite halos with faster winds. The composites have a similar average inclination, suggesting those with faster winds clear channels in the interstellar medium (ISM), reducing the fraction of Lyαphotons resonantly scattered to large radii. A uniform expanding shell radiative transfer model reproduces the shape but not the normalization of the observed double-peaked Lyαprofiles. Models that adopt a more realistic, clumpy ISM are likely needed to reproduce both the shape and normalization of the Lyαprofiles.more » « less
An official website of the United States government
