skip to main content


Title: Male‐biased stone tool use by wild white‐faced capuchins ( Cebus capucinus imitator )
Abstract

Tool‐using primates often show sex differences in both the frequency and efficiency of tool use. In species with sex‐biased dispersal, such within‐group variation likely shapes patterns of cultural transmission of tool‐use traditions between groups. On the Panamanian islands of Jicarón and Coiba, a population of white‐faced capuchins (Cebus capucinus imitator)—some of which engage in habitual stone tool use—provide an opportunity to test hypotheses about why such sex‐biases arise. On Jicarón, we have only observed males engaging in stone tool use, whereas on Coiba, both sexes are known to use tools. Using 5 years of camera trap data, we provide evidence that this variation likely reflects a sex difference in tool use rather than a sampling artifact, and then test hypotheses about the factors driving this pattern. Differences in physical ability or risk‐aversion, and competition over access to anvils do not account for the sex‐differences in tool‐use we observe. Our data show that adult females are physically capable of stone tool use: adult females on Coiba and juveniles on Jicarón smaller than adult females regularly engage in tool use. Females also have ample opportunity to use tools: the sexes are equally terrestrial, and competition over anvils is low. Finally, females rarely scrounge on left‐over food items either during or after tool‐using events, suggesting they are not being provisioned by males. Although it remains unclear why adult white‐faced capuchin females on Jicarón do not use stone‐tools, our results illustrate that such sex biases in socially learned behaviors can arise even in the absence of obvious physical, environmental, and social constraints. This suggests that a much more nuanced understanding of the differences in social structure, diet, and dispersal patterns are needed to explain why sex‐biases in tool use arise in some populations but not in others.

 
more » « less
NSF-PAR ID:
10485917
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Primatology
Volume:
86
Issue:
4
ISSN:
0275-2565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many mammalian species display sex differences in the frequency of play behavior, yet the animal literature includes few longitudinal studies of play, which are important for understanding the developmental timing of sex differences and the evolutionary functions of play. We analyzed social play, solitary play, and grooming using an 18‐year data set on 38 wild white‐faced capuchin monkeys (Cebus capucinus) followed since infancy. Rates of each behavior were measured as the proportion of point samples taken during focal follows in which the individual engaged in each behavior. To determine sex differences in these rates, we ran a series of generalized linear mixed models, considering both linear and quadratic effects of age, and chose the optimal model for each of the three behavioral outcomes based on information criteria. Rates of both social play and solitary play decreased with age, with the exception of social play in males, which increased in the early juvenile period before decreasing. Male and female capuchins had different developmental patterns of social play, with males playing more than females during most of the juvenile period, but they did not display meaningful sex differences in solitary play rates. Additionally, males and females had different patterns of grooming over the lifespan: males participated in grooming at low rates throughout their lives, while adult females participated in grooming at much higher rates, peaking around age 11 years before declining. We suggest that male and female white‐faced capuchins may adopt alternative social bonding strategies, including different developmental timing and different behaviors (social play for males vs. grooming for females). Our results were consistent with two functional hypotheses of play, the practice and bonding hypotheses. This study demonstrates that play behavior may be critical for the development of sex‐specific social strategies and emphasizes the importance of developmental perspectives on social behaviors.

     
    more » « less
  2. Abstract Background and Aims

    Sphagnum (peatmoss) comprises a moss (Bryophyta) clade with ~300–500 species. The genus has unparalleled ecological importance because Sphagnum-dominated peatlands store almost a third of the terrestrial carbon pool and peatmosses engineer the formation and microtopography of peatlands. Genomic resources for Sphagnum are being actively expanded, but many aspects of their biology are still poorly known. Among these are the degree to which Sphagnum species reproduce asexually, and the relative frequencies of male and female gametophytes in these haploid-dominant plants. We assess clonality and gametophyte sex ratios and test hypotheses about the local-scale distribution of clones and sexes in four North American species of the S. magellanicum complex. These four species are difficult to distinguish morphologically and are very closely related. We also assess microbial communities associated with Sphagnum host plant clones and sexes at two sites.

    Methods

    Four hundred and five samples of the four species, representing 57 populations, were subjected to restriction site-associated DNA sequencing (RADseq). Analyses of population structure and clonality based on the molecular data utilized both phylogenetic and phenetic approaches. Multi-locus genotypes (genets) were identified using the RADseq data. Sexes of sampled ramets were determined using a molecular approach that utilized coverage of loci on the sex chromosomes after the method was validated using a sample of plants that expressed sex phenotypically. Sex ratios were estimated for each species, and populations within species. Difference in fitness between genets was estimated as the numbers of ramets each genet comprised. Degrees of clonality [numbers of genets/numbers of ramets (samples)] within species, among sites, and between gametophyte sexes were estimated. Sex ratios were estimated for each species, and populations within species. Sphagnum-associated microbial communities were assessed at two sites in relation to Sphagnum clonality and sex.

    Key Results

    All four species appear to engage in a mixture of sexual and asexual (clonal) reproduction. A single ramet represents most genets but two to eight ramets were dsumbers ansd text etected for some genets. Only one genet is represented by ramets in multiple populations; all other genets are restricted to a single population. Within populations ramets of individual genets are spatially clustered, suggesting limited dispersal even within peatlands. Sex ratios are male-biased in S. diabolicum but female-biased in the other three species, although significantly so only in S. divinum. Neither species nor males/females differ in levels of clonal propagation. At St Regis Lake (NY) and Franklin Bog (VT), microbial community composition is strongly differentiated between the sites, but differences between species, genets and sexes were not detected. Within S. divinum, however, female gametophytes harboured two to three times the number of microbial taxa as males.

    Conclusions

    These four Sphagnum species all exhibit similar reproductive patterns that result from a mixture of sexual and asexual reproduction. The spatial patterns of clonally replicated ramets of genets suggest that these species fall between the so-called phalanx patterns, where genets abut one another but do not extensively mix because of limited ramet fragmentation, and the guerrilla patterns, where extensive genet fragmentation and dispersal result in greater mixing of different genets. Although sex ratios in bryophytes are most often female-biased, both male and female biases occur in this complex of closely related species. The association of far greater microbial diversity for female gametophytes in S. divinum, which has a female-biased sex ratio, suggests additional research to determine if levels of microbial diversity are consistently correlated with differing patterns of sex ratio biases.

     
    more » « less
  3. Abstract

    Selection that acts in a sex-specific manner causes the evolution of sexual dimorphism. Sex-specific phenotypic selection has been demonstrated in many taxa and can be in the same direction in the two sexes (differing only in magnitude), limited to one sex, or in opposing directions (antagonistic). Attempts to detect the signal of sex-specific selection from genomic data have confronted numerous difficulties. These challenges highlight the utility of “direct approaches,” in which fitness is predicted from individual genotype within each sex. Here, we directly measured selection on Single Nucleotide Polymorphisms (SNPs) in a natural population of the sexually dimorphic, dioecious plant, Silene latifolia. We measured flowering phenotypes, estimated fitness over one reproductive season, as well as survival to the next year, and genotyped all adults and a subset of their offspring for SNPs across the genome. We found that while phenotypic selection was congruent (fitness covaried similarly with flowering traits in both sexes), SNPs showed clear evidence for sex-specific selection. SNP-level selection was particularly strong in males and may involve an important gametic component (e.g., pollen competition). While the most significant SNPs under selection in males differed from those under selection in females, paternity selection showed a highly polygenic tradeoff with female survival. Alleles that increased male mating success tended to reduce female survival, indicating sexual antagonism at the genomic level. Perhaps most importantly, this experiment demonstrates that selection within natural populations can be strong enough to measure sex-specific fitness effects of individual loci.

    Males and females typically differ phenotypically, a phenomenon known as sexual dimorphism. These differences arise when selection on males differs from selection on females, either in magnitude or direction. Estimated relationships between traits and fitness indicate that sex-specific selection is widespread, occurring in both plants and animals, and explains why so many species exhibit sexual dimorphism. Finding the specific loci experiencing sex-specific selection is a challenging prospect but one worth undertaking given the extensive evolutionary consequences. Flowering plants with separate sexes are ideal organisms for such studies, given that the fitness of females can be estimated by counting the number of seeds they produce. Determination of fitness for males has been made easier as thousands of genetic markers can now be used to assign paternity to seeds. We undertook just such a study in S. latifolia, a short-lived, herbaceous plant. We identified loci under sex-specific selection in this species and found more loci affecting fitness in males than females. Importantly, loci with major effects on male fitness were distinct from the loci with major effects on females. We detected sexual antagonism only when considering the aggregate effect of many loci. Hence, even though males and females share the same genome, this does not necessarily impose a constraint on their independent evolution.

     
    more » « less
  4. Abstract Background

    Social isolation is a key risk factor for the onset and progression of age-related disease and mortality in humans. Nevertheless, older people commonly have narrowing social networks, with influences from both cultural factors and the constraints of senescence. We evaluate evolutionarily grounded models by studying social aging in wild chimpanzees, a system where such influences are more easily separated than in humans, and where individuals are long-lived and decline physically with age.

    Methodology

    We applied social network analysis to examine age-related changes in social integration in a 7+ year mixed-longitudinal dataset on 38 wild adult chimpanzees (22 females, 16 males). Metrics of social integration included social attractivity and overt effort (directed degree and strength), social roles (betweenness and local transitivity) and embeddedness (eigenvector centrality) in grooming networks.

    Results

    Both sexes reduced the strength of direct ties with age (males in-strength, females out-strength). However, males increased embeddedness with age, alongside cliquishness. These changes were independent of age-related changes in social and reproductive status. Both sexes maintained highly repeatable inter-individual differences in integration, particularly in mixed-sex networks.

    Conclusions and implications

    As in humans, chimpanzees appear to experience senescence-related declines in social engagement. However, male social embeddedness and overall sex differences were patterned more similarly to humans in non-industrialized versus industrialized societies. Such comparisons suggest common evolutionary roots to ape social aging and that social isolation in older humans may hinge on novel cultural factors of many industrialized societies. Lastly, individual and sex differences are potentially important mediators of successful social aging in chimpanzees, as in humans.

    Lay summary: Few biological models explain why humans so commonly have narrowing social networks with age, despite the risk factor of social isolation that small networks pose. We use wild chimpanzees as a comparative system to evaluate models grounded in an evolutionary perspective, using social network analysis to examine changes in integration with age. Like humans in industrialized populations, chimpanzees had lower direct engagement with social partners as they aged. However, sex differences in integration and older males’ central positions within the community network were more like patterns of sociality in several non-industrialized human populations. Our results suggest common evolutionary roots to human and chimpanzee social aging, and that the risk of social isolation with age in industrialized populations stems from novel cultural factors.

     
    more » « less
  5. The democratization of genomic technologies has revealed profound sex biases in expression patterns in every adult tissue, even in organs with no conspicuous differences, such as the heart. With the increasing awareness of the disparities in cardiac pathophysiology between males and females, there are exciting opportunities to explore how sex differences in the heart are established developmentally. Although sexual dimorphism is traditionally attributed to hormonal influence, expression and epigenetic sex biases observed in early cardiac development can only be accounted for by the difference in sex chromosome composition, i.e., XX in females and XY in males. In fact, genes linked to the X and Y chromosomes, many of which encode regulatory factors, are expressed in cardiac progenitor cells and at every subsequent developmental stage. The effect of the sex chromosome composition may explain why many congenital heart defects originating before gonad formation exhibit sex biases in presentation, mortality, and morbidity. Some transcriptional and epigenetic sex biases established soon after fertilization persist in cardiac lineages, suggesting that early epigenetic events are perpetuated beyond early embryogenesis. Importantly, when sex hormones begin to circulate, they encounter a cardiac genome that is already functionally distinct between the sexes. Although there is a wealth of knowledge on the effects of sex hormones on cardiac function, we propose that sex chromosome-linked genes and their downstream targets also contribute to the differences between male and female hearts. Moreover, identifying how hormones influence sex chromosome effects, whether antagonistically or synergistically, will enhance our understanding of how sex disparities are established. We also explore the possibility that sexual dimorphism of the developing heart predicts sex-specific responses to environmental signals and foreshadows sex-biased health-related outcomes after birth. 
    more » « less