Abstract Using the Systematically Measuring Ultra-Diffuse Galaxies and Sloan Digital Sky Survey catalogs and our own reprocessing of the Legacy Survey imaging, we investigate the properties of nuclear star clusters (NSCs) in galaxies having central surface brightnesses as low as 27 mag arcsec−2. We identify 273 (123 with known redshift) and 32 NSC-bearing galaxies in the two samples, respectively, where we require candidate NSCs to have a separation of less than 0.10refrom the galaxy center. We find that galaxies with low central surface brightness (μ0,g> 24 mag arcsec−2) are more likely to contain an NSC if they (1) have a higher stellar mass, (2) have a higher stellar-to-total mass ratio, (3) have a brighter central surface brightness, (4) have a larger axis ratio, or (5) lie in a denser environment. Because of the correlations among these various quantities, it is likely that only one or two are true physical drivers. We also find scaling relations for the NSC mass with stellar mass (MNSC/ ) and halo mass (MNSC/ ), although it is the scaling with halo mass that is consistent with a direct proportionality. In galaxies with an NSC,MNSC≈ 10−4Mh,gal. This proportionality echoes the finding of a direct proportionality between the mass (or number) of globular clusters (GCs) in galaxies and the galaxy’s total mass. These findings favor a related origin for GCs and NSCs.
more »
« less
Systematically Measuring Ultra-diffuse Galaxies (SMUDGes). VI. Nuclear Star Clusters
Abstract We present our photometric search for potential nuclear star clusters (NSCs) in ultra-diffuse galaxies (UDGs) as an extension of the SMUDGes catalog. We identify 325 SMUDGes galaxies with NSCs and, from the 144 with existing distance estimates, identify 33 NSC hosts as UDGs (μ0,g≥ 24 mag arcsec−2,re≥ 1.5 kpc). The SMUDGes with NSCs lie on the galaxy red sequence, satisfy the relationship between NSC and host galaxy stellar masses, have a mean NSC stellar mass fraction of 0.02 but reach as high as 0.1, have NSCs that are displaced from the host center with a standard deviation of 0.10re, and weakly favor higher-density environments. All of these properties are consistent with previous results from higher surface brightness galaxy samples, allowing for at most a relatively weak dependence of NSC behavior on host galaxy surface brightness.
more »
« less
- Award ID(s):
- 2006785
- PAR ID:
- 10485941
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 167
- Issue:
- 2
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 61
- Size(s):
- Article No. 61
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The volumetric rate of tidal disruption events (TDEs) encodes information on the still-unknown demographics of central massive black holes (MBHs) in low-mass galaxies (≲109M⊙). Theoretical TDE rates from model galaxy samples can extract this information, but this requires accurately defining the nuclear stellar density structures. This region is typically dominated by nuclear star clusters (NSCs), which have been shown to increase TDE rates by orders of magnitude. Thus, we assemble the largest available sample of parsec-scale 3D density profiles that include NSC components. We deproject the point-spread-function-deconvolved surface-brightness profiles of 91 nearby galaxies of varying morphology and combine these with nuclear mass-to-light ratios estimated from measured colors or spectral synthesis to create 3D mass density profiles. We fit the inner 3D density profile to find the best-fit power-law density profile in each galaxy. We compile this information as a function of galaxy stellar mass to fit new empirical density scaling relations. These fits reveal positive correlations between galaxy stellar mass and central stellar density in both early- and late-type galaxies. We find that early-type galaxies have somewhat higher densities and shallower profiles relative to late-type galaxies at the same mass. We also use the density profiles to estimate the influence radius of each galaxy’s MBH and find that the sphere of influence was likely resolved in most cases. These new relations will be used in future works to build mock galaxy samples for dynamical TDE rate calculations, with the aim of constraining MBH demographics in low-mass galaxies.more » « less
-
Abstract We present Hubble Space Telescope imaging of 14 gas-rich, low-surface-brightness galaxies in the field at distances of 25–36 Mpc, with mean effective radii andg-band central surface brightnesses of 1.9 kpc and 24.2 mag arcsec−2. Nine meet the standard criteria to be considered ultra-diffuse galaxies (UDGs). An inspection of point-like sources brighter than the turnover magnitude of the globular cluster luminosity function and within twice the half-light radii of each galaxy reveals that, unlike those in denser environments, gas-rich, field UDGs host very few old globular clusters (GCs). Most of the targets (nine) have zero candidate GCs, with the remainder having one or two candidates each. These findings are broadly consistent with expectations for normal dwarf galaxies of similar stellar mass. This rules out gas-rich, field UDGs as potential progenitors of the GC-rich UDGs that are typically found in galaxy clusters. However, some in galaxy groups may be directly accreted from the field. In line with other recent results, this strongly suggests that there must be at least two distinct formation pathways for UDGs, and that this subpopulation is simply an extreme low surface brightness extension of the underlying dwarf galaxy population. The root cause of their diffuse stellar distributions remains unclear, but the formation mechanism appears to only impact the distribution of stars (and potentially dark matter), without strongly impacting the distribution of neutral gas, the overall stellar mass, or the number of GCs.more » « less
-
Abstract To better understand the formation of large, low-surface-brightness galaxies, we measure the correlation function between ultradiffuse galaxy (UDG) candidates and Milky Way analogs (MWAs). We find that: (1) the projected radial distribution of UDG satellites (projected surface density ∝r−0.84±0.06) is consistent with that of normal satellite galaxies; (2) the number of UDG satellites per MWA (SUDG) is ∼0.5 ± 0.1 over projected radii from 20 to 250 kpc and −17 <Mr< −13.5; (3)SUDGis consistent with a linear extrapolation of the relationship between the number of UDGs per halo versus halo mass obtained over galaxy group and cluster scales; (4) red UDG satellites dominate the population of UDG satellites (∼80%); (5) over the range of satellite magnitudes studied, UDG satellites comprise ∼10% of the satellite galaxy population of MWAs; and (6) a significant fraction of these (∼13%) have estimated total masses >1010.9M⊙or, equivalently, at least half the halo mass of the LMC, and populate a large fraction (∼18%) of the expected subhalos down to these masses. All of these results suggest a close association between the overall low-mass galaxy population and UDGs, which we interpret as favoring models where UDG formation principally occurs within the general context of low-mass galaxy formation over models invoking more exotic physical processes specifically invoked to form UDGs.more » « less
-
ABSTRACT We present a pilot study of the atomic neutral hydrogen gas (H i) content of ultra-diffuse galaxy (UDG) candidates. In this paper, we use the pre-pilot Eridanus field data from the Widefield ASKAP L-band Legacy All-sky Blind Survey to search for H i in UDG candidates found in the Systematically Measuring Ultra-diffuse Galaxies survey (SMUDGes). We narrow down to 78 SMUDGes UDG candidates within the maximum radial extents of the Eridanus subgroups for this study. Most SMUDGes UDGs candidates in this study have effective radii smaller than 1.5 kpc and thus fail to meet the defining size threshold. We only find one H i detection, which we classify as a low-surface-brightness dwarf. Six putative UDGs are H i-free. We show the overall distribution of SMUDGes UDG candidates on the size–luminosity relation and compare them with low-mass dwarfs on the atomic gas fraction versus stellar mass scaling relation. There is no correlation between gas-richness and colour indicating that colour is not the sole parameter determining their H i content. The evolutionary paths that drive galaxy morphological changes and UDG formation channels are likely the additional factors to affect the H i content of putative UDGs. The actual numbers of UDGs for the Eridanus and NGC 1332 subgroups are consistent with the predicted abundance of UDGs and the halo virial mass relation, except for the NGC 1407 subgroup, which has a smaller number of UDGs than the predicted number. Different group environments suggest that these putative UDGs are likely formed via the satellite accretion scenario.more » « less