skip to main content


Title: Systematically Measuring Ultra-diffuse Galaxies (SMUDGes). III. The Southern SMUDGes Catalog
Abstract

We present a catalog of 5598 ultra-diffuse galaxy (UDG) candidates with effective radiusre> 5.″3 distributed throughout the southern portion of the DESI Legacy Imaging Survey covering ∼15,000 deg2. The catalog is most complete for physically large (re> 2.5 kpc) UDGs lying in the redshift range 1800 ≲cz/km s−1≲ 7000, where the lower bound is defined by where incompleteness becomes significant for large objects on the sky and the upper bound by our minimum angular size selection criterion. Because physical size is integral to the definition of a UDG, we develop a method of distance estimation using existing redshift surveys. With three different galaxy samples, two of which contain UDGs with spectroscopic redshifts, we estimate that the method has a redshift accuracy of ∼75% when the method converges, although larger, more representative spectroscopic UDG samples are needed in order to fully understand the behavior of the method. We are able to estimate distances for 1079 of our UDG candidates (19%). Finally, to illustrate some uses of the catalog, we present both distance-independent and distance-dependent results. In the latter category, we establish that the red sequence of UDGs lies on the extrapolation of the red sequence relation for bright ellipticals and that the environment–color relation is at least qualitatively similar to that of high surface brightness galaxies. Both of these results challenge some of the models proposed for UDG evolution.

 
more » « less
Award ID(s):
2006785
NSF-PAR ID:
10486401
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
261
Issue:
2
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 11
Size(s):
["Article No. 11"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the completed catalog of ultradiffuse galaxy (UDG) candidates (7070 objects) from our search of the DR9 Legacy Survey images, including distance and total mass estimates for 1529 and 1436 galaxies, respectively, that we provide and describe in detail. From the sample with estimated distances, we obtain a sample of 585 UDGs (μ0,g≥ 24 mag arcsec−2andre≥ 1.5 kpc) over 20,000 square degrees of sky in various environments. We conclude that UDGs in our sample are limited to 1010Mh/M≲ 1011.5and are on average a factor of 1.5–7 deficient in stars relative to the general population of galaxies of the same total mass. That factor increases with increasing galaxy size and mass up to a factor of ∼10 when the total mass of the UDG increases beyondMh= 1011M. We do not find evidence that this factor has a dependence on the UDGs large-scale environment.

     
    more » « less
  2. Abstract

    We present our photometric search for potential nuclear star clusters (NSCs) in ultra-diffuse galaxies (UDGs) as an extension of the SMUDGes catalog. We identify 325 SMUDGes galaxies with NSCs and, from the 144 with existing distance estimates, identify 33 NSC hosts as UDGs (μ0,g≥ 24 mag arcsec−2,re≥ 1.5 kpc). The SMUDGes with NSCs lie on the galaxy red sequence, satisfy the relationship between NSC and host galaxy stellar masses, have a mean NSC stellar mass fraction of 0.02 but reach as high as 0.1, have NSCs that are displaced from the host center with a standard deviation of 0.10re, and weakly favor higher-density environments. All of these properties are consistent with previous results from higher surface brightness galaxy samples, allowing for at most a relatively weak dependence of NSC behavior on host galaxy surface brightness.

     
    more » « less
  3. Abstract We present 226 large ultra-diffuse galaxy (UDG) candidates ( r e > 5.″3, μ 0, g > 24 mag arcsec −2 ) in the SDSS Stripe 82 region recovered using our improved procedure developed in anticipation of processing the entire Legacy Surveys footprint. The advancements include less constrained structural parameter fitting, expanded wavelet filtering criteria, consideration of Galactic dust, estimates of parameter uncertainties and completeness based on simulated sources, and refinements of our automated candidate classification. We have a sensitivity ∼1 mag fainter in μ 0, g than the largest published catalog of this region. Using our completeness-corrected sample, we find that (1) there is no significant decline in the number of UDG candidates as a function of μ 0, g to the limit of our survey (∼26.5 mag arcsec −2 ); (2) bluer candidates have smaller Sérsic n ; (3) most blue ( g – r < 0.45 mag) candidates have μ 0, g ≲ 25 mag arcsec −2 and will fade to populate the UDG red sequence we observe to ∼26.5 mag arcsec −2 ; (4) any red UDGs that exist significantly below our μ 0, g sensitivity limit are not descendent from blue UDGs in our sample; and (5) candidates with lower μ 0, g tend to smaller n . We anticipate that the final SMUDGes sample will contain ∼30 × as many candidates. 
    more » « less
  4. Abstract

    To better understand the formation of large, low-surface-brightness galaxies, we measure the correlation function between ultradiffuse galaxy (UDG) candidates and Milky Way analogs (MWAs). We find that: (1) the projected radial distribution of UDG satellites (projected surface density ∝r−0.84±0.06) is consistent with that of normal satellite galaxies; (2) the number of UDG satellites per MWA (SUDG) is ∼0.5 ± 0.1 over projected radii from 20 to 250 kpc and −17 <Mr< −13.5; (3)SUDGis consistent with a linear extrapolation of the relationship between the number of UDGs per halo versus halo mass obtained over galaxy group and cluster scales; (4) red UDG satellites dominate the population of UDG satellites (∼80%); (5) over the range of satellite magnitudes studied, UDG satellites comprise ∼10% of the satellite galaxy population of MWAs; and (6) a significant fraction of these (∼13%) have estimated total masses >1010.9Mor, equivalently, at least half the halo mass of the LMC, and populate a large fraction (∼18%) of the expected subhalos down to these masses. All of these results suggest a close association between the overall low-mass galaxy population and UDGs, which we interpret as favoring models where UDG formation principally occurs within the general context of low-mass galaxy formation over models invoking more exotic physical processes specifically invoked to form UDGs.

     
    more » « less
  5. Abstract We present new redshift measurements for 19 candidate ultra-diffuse galaxies (UDGs) from the Systematically Measuring Ultra-Diffuse Galaxies (SMUDGes) survey after conducting a long-slit spectroscopic follow-up campaign on 23 candidates with the Large Binocular Telescope. We combine these results with redshift measurements from other sources for 29 SMUDGes and 20 non-SMUDGes candidate UDGs. Together, this sample yields 44 spectroscopically confirmed UDGs ( r e ≥ 1.5 kpc and μ g (0) ≥ 24 mag arcsec −2 within uncertainties) and spans cluster and field environments, with all but one projected on the Coma cluster and environs. We find no statistically significant differences in the structural parameters of cluster and noncluster confirmed UDGs, although there are hints of differences among the axis ratio distributions. Similarly, we find no significant structural differences among those in locally dense or sparse environments. However, we observe a significant difference in color with respect to projected clustercentric radius, confirming trends observed previously in statistical UDG samples. This trend strengthens further when considering whether UDGs reside in either cluster or locally dense environments, suggesting starkly different star formation histories for UDGs residing in high- and low-density environments. Of the 16 large ( r e ≥ 3.5 kpc) UDGs in our sample, only one is a field galaxy that falls near the early-type galaxy red sequence. No other field UDGs found in low-density environments fall near the red sequence. This finding, in combination with our detection of Galaxy Evolution Explorer NUV flux in nearly half of the UDGs in sparse environments, suggests that field UDGs are a population of slowly evolving galaxies. 
    more » « less