skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coronal Hole Detection and Open Magnetic Flux
Abstract Many scientists use coronal hole (CH) detections to infer open magnetic flux. Detection techniques differ in the areas that they assign as open, and may obtain different values for the open magnetic flux. We characterize the uncertainties of these methods, by applying six different detection methods to deduce the area and open flux of a near-disk center CH observed on 2010 September 19, and applying a single method to five different EUV filtergrams for this CH. Open flux was calculated using five different magnetic maps. The standard deviation (interpreted as the uncertainty) in the open flux estimate for this CH ≈ 26%. However, including the variability of different magnetic data sources, this uncertainty almost doubles to 45%. We use two of the methods to characterize the area and open flux for all CHs in this time period. We find that the open flux is greatly underestimated compared to values inferred from in situ measurements (by 2.2–4 times). We also test our detection techniques on simulated emission images from a thermodynamic MHD model of the solar corona. We find that the methods overestimate the area and open flux in the simulated CH, but the average error in the flux is only about 7%. The full-Sun detections on the simulated corona underestimate the model open flux, but by factors well below what is needed to account for the missing flux in the observations. Under-detection of open flux in coronal holes likely contributes to the recognized deficit in solar open flux, but is unlikely to resolve it.  more » « less
Award ID(s):
1854790
PAR ID:
10485949
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
918
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 21
Size(s):
Article No. 21
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One systematic limitation of solar coronal hole (CH) detection at extreme ultraviolet (EUV) wavelengths is the obscuration of dark regions of the corona by brighter structures along the line of sight. Another problem arises when using CHs to compute the Sun’s open magnetic flux, where surface measurements of the radial magnetic field, B r , are situated slightly below the effective height of coronal EUV emission. In this paper, we explore these two limitations utilizing a thermodynamic magnetohydrodynamic (MHD) model of the corona for Carrington rotation (CR) 2101, where we generate CH detections from EUV 193 Å images of the corona forward-modeled from the MHD solution, and where the modeled open field is known. We demonstrate a method to combine EUV images into a full Sun map that helps alleviate CH obscuration called theminimum intensity diskmerge(MIDM). We also show the variation in measured open flux and CH area that is due to the effective height differences between EUV and B r measurements. We then apply the MIDM method to SDO/AIA 193 Å observations from CR 2101, and conduct an analogous analysis. In this case, the MIDM method uses time-varying images, the effects of which are discussed. We show that overall, the MIDM method and an appreciation of the effective height mismatch provide a useful new way to extract a broader view of CHs, especially near the poles. In turn, they enable improved estimates of the open magnetic flux, and help facilitate comparisons between models and observations. 
    more » « less
  2. Abstract This paper addresses the first direct investigation of the energy budget in the solar corona. Exploiting joint observations of the same coronal plasma by Parker Solar Probe and the Metis coronagraph aboard Solar Orbiter and the conserved equations for mass, magnetic flux, and wave action, we estimate the values of all terms comprising the total energy flux of the proton component of the slow solar wind from 6.3 to 13.3 R ⊙ . For distances from the Sun to less than 7 R ⊙ , we find that the primary source of solar wind energy is magnetic fluctuations including Alfvén waves. As the plasma flows away from the low corona, magnetic energy is gradually converted into kinetic energy, which dominates the total energy flux at heights above 7 R ⊙ . It is found too that the electric potential energy flux plays an important role in accelerating the solar wind only at altitudes below 6 R ⊙ , while enthalpy and heat fluxes only become important at even lower heights. The results finally show that energy equipartition does not exist in the solar corona. 
    more » « less
  3. Context. We investigate the chromospheric counterpart of small-scale coronal loops constituting a coronal bright point (CBP) and its response to a photospheric magnetic-flux increase accompanied by co-temporal CBP heating. Aims. The aim of this study is to simultaneously investigate the chromospheric and coronal layers associated with a CBP, and in so doing, provide further understanding on the heating of plasmas confined in small-scale loops. Methods. We used co-observations from the Atmospheric Imaging Assembly and Helioseismic Magnetic Imager on board the Solar Dynamics Observatory, together with data from the Fast Imaging Solar Spectrograph taken in the H α and Ca  II 8542.1 Å lines. We also employed both linear force-free and potential field extrapolation models to investigate the magnetic topology of the CBP loops and the overlying corona, respectively. We used a new multi-layer spectral inversion technique to derive the temporal variations of the temperature of the H α loops (HLs). Results. We find that the counterpart of the CBP, as seen at chromospheric temperatures, is composed of a bundle of dark elongated features named in this work H α loops, which constitute an integral part of the CBP loop magnetic structure. An increase in the photospheric magnetic flux due to flux emergence is accompanied by a rise of the coronal emission of the CBP loops, that is a heating episode. We also observe enhanced chromospheric activity associated with the occurrence of new HLs and mottles. While the coronal emission and magnetic flux increases appear to be co-temporal, the response of the H α counterpart of the CBP occurs with a small delay of less than 3 min. A sharp temperature increase is found in one of the HLs and in one of the CBP footpoints estimated at 46% and 55% with respect to the pre-event values, also starting with a delay of less than 3 min following the coronal heating episode. The low-lying CBP loop structure remains non-potential for the entire observing period. The magnetic topological analysis of the overlying corona reveals the presence of a coronal null point at the beginning and towards the end of the heating episode. Conclusions. The delay in the response of the chromospheric counterpart of the CBP suggests that the heating may have occurred at coronal heights. 
    more » « less
  4. Abstract We present in this Letter the first global comparison between traditional line-tied steady-state magnetohydrodynamic models and a new, fully time-dependent thermodynamic magnetohydrodynamic simulation of the global corona. To approximate surface magnetic field distributions and magnitudes around solar minimum, we use the Lockheed Evolving Surface-Flux Assimilation Model to obtain input maps that incorporate flux emergence and surface flows over a full solar rotation, including differential rotation and meridional flows. Each time step evolves the previous state of the plasma with a new magnetic field input boundary condition, mimicking photospheric driving on the Sun. We find that this method produces a qualitatively different corona compared to steady-state models. The magnetic energy levels are higher in the time-dependent model, and coronal holes evolve more along the following edge than they do in steady-state models. Coronal changes, as illustrated with forward-modeled emission maps, evolve on longer timescales with time-dependent driving. We discuss implications for active and quiet Sun scenarios, solar wind formation, and widely used steady-state assumptions like potential field source surface calculations. 
    more » « less
  5. Abstract Coronal holes are recognized as the primary sources of heliospheric open magnetic flux (OMF). However, a noticeable gap exists between in situ measured OMF and that derived from remote-sensing observations of the Sun. In this study, we investigate the OMF evolution and its connection to solar structures throughout 2014, with special emphasis on the period from September to October, where a sudden and significant OMF increase was reported. By deriving the OMF evolution at 1 au, modeling it at the source surface, and analyzing solar photospheric data, we provide a comprehensive analysis of the observed phenomenon. First, we establish a strong correlation between the OMF increase and the solar magnetic field derived from a potential-field source-surface model (ccPearson= 0.94). Moreover, we find a good correlation between the OMF and the open flux derived from solar coronal holes (ccPearson= 0.88), although the coronal holes only contain 14%–32% of the Sun’s total open flux. However, we note that while the OMF evolution correlates with coronal hole open flux, there is no correlation with the coronal hole area evolution (ccPearson= 0.0). The temporal increase in OMF correlates with the vanishing remnant magnetic field at the southern pole, caused by poleward flux circulations from the decay of numerous active regions months earlier. Additionally, our analysis suggests a potential link between the OMF enhancement and the concurrent emergence of the largest active region in solar cycle 24. In conclusion, our study provides insights into the strong increase in OMF observed during 2014 September–October. 
    more » « less