For a given class of materials, universal deformations are those deformations that can be maintained in the absence of body forces and by applying solely boundary tractions. For inhomogeneous bodies, in addition to the universality constraints that determine the universal deformations, there are extra constraints on the form of the material inhomogeneities—universal inhomogeneity constraints. Those inhomogeneities compatible with the universal inhomogeneity constraints are called universal inhomogeneities. In a Cauchy elastic solid, stress at a given point and at an instance of time is a function of strain at that point and that exact moment in time, without any dependence on prior history. A Cauchy elastic solid does not necessarily have an energy function, i.e. Cauchy elastic solids are, in general, non-hyperelastic (or non-Green elastic). In this paper, we characterize universal deformations in both compressible and incompressible inhomogeneous isotropic Cauchy elasticity. As Cauchy elasticity includes hyperelasticity, one expects the universal deformations of Cauchy elasticity to be a subset of those of hyperelasticity both in compressible and incompressible cases. It is also expected that the universal inhomogeneity constraints to be more stringent than those of hyperelasticity, and hence, the set of universal inhomogeneities to be smaller than that of hyperelasticity. We prove the somewhat unexpected result that the sets of universal deformations of isotropic Cauchy elasticity and isotropic hyperelasticity are identical, in both the compressible and incompressible cases. We also prove that their corresponding universal inhomogeneities are identical as well.
more »
« less
Physiowise: A Physics-aware Approach to Dicrotic Notch Identification
Dicrotic Notch (DN), one of the most significant and indicative features of the arterial blood pressure (ABP) waveform, becomes less pronounced and thus harder to identify as a matter of aging and pathological vascular stiffness. Generalizable and automatic DN identification for such edge cases is even more challenging in the presence of unexpected ABP waveform deformations that happen due to internal and external noise sources or pathological conditions that cause hemodynamic instability. We propose a physics-aware approach, named Physiowise (PW), that first employs a cardiovascular model to augment the original ABP waveform and reduce unexpected deformations, then apply a set of predefined rules on the augmented signal to find DN locations. We have tested the proposed method on in-vivo data gathered from 14 pigs under hemorrhage and sepsis study. Our result indicates 52% overall mean error improvement with 16% higher detection accuracy within the lowest permitted error range of 30 ms. An additional hybrid methodology is also proposed to allow combining augmentation with any application-specific user-defined rule set.
more »
« less
- PAR ID:
- 10486045
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Computing for Healthcare
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2691-1957
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Standardizing the definition of eccentricity is necessary for unambiguous inference of the orbital eccentricity of compact binaries from gravitational wave observations. In previous works, we proposed a definition of eccentricity for systems without spin-precession that relies solely on the gravitational waveform, is applicable to any waveform model, and has the correct Newtonian limit. In this work, we extend this definition to spin-precessing systems. This simple yet effective extension relies on first transforming the waveform from the inertial frame to the coprecessing frame, and then adopting an amplitude and a phase with reduced spin-induced effects. Our method includes a robust procedure for filtering out spin-induced modulations, which become non-negligible in the small eccentricity and large spin-precession regime. Finally, we apply our method to a set of Numerical Relativity and Effective One Body waveforms to showcase its robustness for generic eccentric spin-precessing binaries. We make our method public via Python implementation ingw_eccentricity.more » « less
-
In this paper, a novel hierarchical signal processing methodology is proposed for generator condition monitoring and fault diagnosis based on raw electrical waveform data in power networks, which can often be measured by strategically located waveform sensors. The impact of generator short circuit faults on strategically located electrical waveform sensors in power networks are firstly investigated and validated in Matlab Simulink. Based on the large set of electrical waveform data produced by Matlab Simulink, a hierarchical algorithm is then designed to locate fault site location and monitor the condition of generators in power networks. Finally, the proposed methodology is validated in 14-bus IEEE standard power network under different scenarios (e.g, one generator fault, two-generator-fault, various aging levels, etc). Our results show that we can locate fault site location and monitor the aging condition of generators in power networks. Compared to traditional condition monitoring and fault diagnosis based on generator sensors, our proposed methodology can monitor a large number of generators based on a limited number of waveform sensors, which promises to reduce the cost of the maintenance and improve the reliability of the power grid.more » « less
-
We study the problem of private vector mean estimation in the shuffle model of privacy where n users each have a unit vector v^{(i)} in R^d. We propose a new multi-message protocol that achieves the optimal error using O~(min(n*epsilon^2, d)) messages per user. Moreover, we show that any (unbiased) protocol that achieves optimal error requires each user to send Omega(min(n*epsilon^2,d)/log(n)) messages, demonstrating the optimality of our message complexity up to logarithmic factors. Additionally, we study the single-message setting and design a protocol that achieves mean squared error O(dn^{d/(d+2)} * epsilon^{-4/(d+2)}). Moreover, we show that any single-message protocol must incur mean squared error Omega(dn^{d/(d+2)}), showing that our protocol is optimal in the standard setting where epsilon = Theta(1). Finally, we study robustness to malicious users and show that malicious users can incur large additive error with a single shuffler.more » « less
-
Storz, Jay (Ed.)Abstract Despite the importance of effective population size (Ne) in evolutionary and conservation biology, it remains unclear what factors have an impact on this quantity. The Nearly Neutral Theory of Molecular Evolution predicts a faster accumulation of deleterious mutations (and thus a higher dN/dS ratio) in populations with small Ne; thus, measuring dN/dS ratios in different groups/species can provide insight into their Ne. Here, we used an exome data set of 1,550 loci from 45 species of marsupials representing 18 of the 22 extant families, to estimate dN/dS ratios across the different branches and families of the marsupial phylogeny. We found a considerable heterogeneity in dN/dS ratios among families and species, which suggests significant differences in their Ne. Furthermore, our multivariate analyses of several life-history traits showed that dN/dS ratios (and thus Ne) are affected by body weight, body length, and weaning age.more » « less
An official website of the United States government

