The proliferation of Internet-connected health devices and the widespread availability of mobile connectivity have resulted in a wealth of reliable digital health data and the potential for delivering just-in-time interventions. However, leveraging these opportunities for health research requires the development and deployment of mobile health (mHealth) applications, which present significant technical challenges for researchers. While existing mHealth solutions have made progress in addressing some of these challenges, they often fall short in terms of time-to-use, affordability, and flexibility for personalization and adaptation. ZotCare aims to address these limitations by offering ready-to-use and flexible services, providing researchers with an accessible, cost-effective, and adaptable solution for their mHealth studies. This article focuses on ZotCare’s service orchestration and highlights its capabilities in creating a programmable environment for mHealth research. Additionally, we showcase several successful research use cases that have utilized ZotCare, both in the past and in ongoing projects. Furthermore, we provide resources and information for researchers who are considering ZotCare as their mHealth research solution.
more » « less- Award ID(s):
- 1831918
- NSF-PAR ID:
- 10486072
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Digital Health
- Volume:
- 5
- ISSN:
- 2673-253X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Background The proliferation of mobile health (mHealth) applications is partly driven by the advancements in sensing and communication technologies, as well as the integration of artificial intelligence techniques. Data collected from mHealth applications, for example, on sensor devices carried by patients, can be mined and analyzed using artificial intelligence–based solutions to facilitate remote and (near) real-time decision-making in health care settings. However, such data often sit in data silos, and patients are often concerned about the privacy implications of sharing their raw data. Federated learning (FL) is a potential solution, as it allows multiple data owners to collaboratively train a machine learning model without requiring access to each other’s raw data. Objective The goal of this scoping review is to gain an understanding of FL and its potential in dealing with sensitive and heterogeneous data in mHealth applications. Through this review, various stakeholders, such as health care providers, practitioners, and policy makers, can gain insight into the limitations and challenges associated with using FL in mHealth and make informed decisions when considering implementing FL-based solutions. Methods We conducted a scoping review following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). We searched 7 commonly used databases. The included studies were analyzed and summarized to identify the possible real-world applications and associated challenges of using FL in mHealth settings. Results A total of 1095 articles were retrieved during the database search, and 26 articles that met the inclusion criteria were included in the review. The analysis of these articles revealed 2 main application areas for FL in mHealth, that is, remote monitoring and diagnostic and treatment support. More specifically, FL was found to be commonly used for monitoring self-care ability, health status, and disease progression, as well as in diagnosis and treatment support of diseases. The review also identified several challenges (eg, expensive communication, statistical heterogeneity, and system heterogeneity) and potential solutions (eg, compression schemes, model personalization, and active sampling). Conclusions This scoping review has highlighted the potential of FL as a privacy-preserving approach in mHealth applications and identified the technical limitations associated with its use. The challenges and opportunities outlined in this review can inform the research agenda for future studies in this field, to overcome these limitations and further advance the use of FL in mHealth.more » « less
-
null (Ed.)Background Mobile health (mHealth) methods often rely on active input from participants, for example, in the form of self-report questionnaires delivered via web or smartphone, to measure health and behavioral indicators and deliver interventions in everyday life settings. For short-term studies or interventions, these techniques are deployed intensively, causing nontrivial participant burden. For cases where the goal is long-term maintenance, limited infrastructure exists to balance information needs with participant constraints. Yet, the increasing precision of passive sensors such as wearable physiology monitors, smartphone-based location history, and internet-of-things devices, in combination with statistical feature selection and adaptive interventions, have begun to make such things possible. Objective In this paper, we introduced Wear-IT, a smartphone app and cloud framework intended to begin addressing current limitations by allowing researchers to leverage commodity electronics and real-time decision making to optimize the amount of useful data collected while minimizing participant burden. Methods The Wear-IT framework uses real-time decision making to find more optimal tradeoffs between the utility of data collected and the burden placed on participants. Wear-IT integrates a variety of consumer-grade sensors and provides adaptive, personalized, and low-burden monitoring and intervention. Proof of concept examples are illustrated using artificial data. The results of qualitative interviews with users are provided. Results Participants provided positive feedback about the ease of use of studies conducted using the Wear-IT framework. Users expressed positivity about their overall experience with the framework and its utility for balancing burden and excitement about future studies that real-time processing will enable. Conclusions The Wear-IT framework uses a combination of passive monitoring, real-time processing, and adaptive assessment and intervention to provide a balance between high-quality data collection and low participant burden. The framework presents an opportunity to deploy adaptive assessment and intervention designs that use real-time processing and provides a platform to study and overcome the challenges of long-term mHealth intervention.more » « less
-
null (Ed.)Background The classic Marshmallow Test, where children were offered a choice between one small but immediate reward (eg, one marshmallow) or a larger reward (eg, two marshmallows) if they waited for a period of time, instigated a wealth of research on the relationships among impulsive responding, self-regulation, and clinical and life outcomes. Impulsivity is a hallmark feature of self-regulation failures that lead to poor health decisions and outcomes, making understanding and treating impulsivity one of the most important constructs to tackle in building a culture of health. Despite a large literature base, impulsivity measurement remains difficult due to the multidimensional nature of the construct and limited methods of assessment in daily life. Mobile devices and the rise of mobile health (mHealth) have changed our ability to assess and intervene with individuals remotely, providing an avenue for ambulatory diagnostic testing and interventions. Longitudinal studies with mobile devices can further help to understand impulsive behaviors and variation in state impulsivity in daily life. Objective The aim of this study was to develop and validate an impulsivity mHealth diagnostics and monitoring app called Digital Marshmallow Test (DMT) using both the Apple and Android platforms for widespread dissemination to researchers, clinicians, and the general public. Methods The DMT app was developed using Apple’s ResearchKit (iOS) and Android’s ResearchStack open source frameworks for developing health research study apps. The DMT app consists of three main modules: self-report, ecological momentary assessment, and active behavioral and cognitive tasks. We conducted a study with a 21-day assessment period (N=116 participants) to validate the novel measures of the DMT app. Results We used a semantic differential scale to develop self-report trait and momentary state measures of impulsivity as part of the DMT app. We identified three state factors (inefficient, thrill seeking, and intentional) that correlated highly with established measures of impulsivity. We further leveraged momentary semantic differential questions to examine intraindividual variability, the effect of daily life, and the contextual effect of mood on state impulsivity and daily impulsive behaviors. Our results indicated validation of the self-report sematic differential and related results, and of the mobile behavioral tasks, including the Balloon Analogue Risk Task and Go-No-Go task, with relatively low validity of the mobile Delay Discounting task. We discuss the design implications of these results to mHealth research. Conclusions This study demonstrates the potential for assessing different facets of trait and state impulsivity during everyday life and in clinical settings using the DMT mobile app. The DMT app can be further used to enhance our understanding of the individual facets that underlie impulsive behaviors, as well as providing a promising avenue for digital interventions. Trial Registration ClinicalTrials.gov NCT03006653; https://www.clinicaltrials.gov/ct2/show/NCT03006653more » « less
-
Background Participation in ambulatory cardiac rehabilitation remains low, especially among older adults. Although mobile health cardiac rehabilitation (mHealth-CR) provides a novel opportunity to deliver care, age-specific impairments may limit older adults’ uptake, and efficacy data are currently lacking. Objective This study aims to describe the design of the rehabilitation using mobile health for older adults with ischemic heart disease in the home setting (RESILIENT) trial. Methods RESILIENT is a multicenter randomized clinical trial that is enrolling patients aged ≥65 years with ischemic heart disease in a 3:1 ratio to either an intervention (mHealth-CR) or control (usual care) arm, with a target sample size of 400 participants. mHealth-CR consists of a commercially available mobile health software platform coupled with weekly exercise therapist sessions to review progress and set new activity goals. The primary outcome is a change in functional mobility (6-minute walk distance), which is measured at baseline and 3 months. Secondary outcomes are health status, goal attainment, hospital readmission, and mortality. Among intervention participants, engagement with the mHealth-CR platform will be analyzed to understand the characteristics that determine different patterns of use (eg, persistent high engagement and declining engagement). Results As of December 2021, the RESILIENT trial had enrolled 116 participants. Enrollment is projected to continue until October 2023. The trial results are expected to be reported in 2024. Conclusions The RESILIENT trial will generate important evidence about the efficacy of mHealth-CR among older adults in multiple domains and characteristics that determine the sustained use of mHealth-CR. These findings will help design future precision medicine approaches to mobile health implementation in older adults. This knowledge is especially important in light of the COVID-19 pandemic that has shifted much of health care to a remote, internet-based setting. Trial Registration ClinicalTrials.gov NCT03978130; https://clinicaltrials.gov/ct2/show/NCT03978130 International Registered Report Identifier (IRRID) DERR1-10.2196/32163more » « less
-
Wrist-worn devices hold great potential as a platform for mobile health (mHealth) applications because they comprise a familiar, convenient form factor and can embed sensors in proximity to the human body. Despite this potential, however, they are severely limited in battery life, storage, bandwidth, computing power, and screen size. In this paper, we describe the experience of the research and development team designing, implementing and evaluating Amulet? an open-hardware, open-software wrist-worn computing device? and its experience using Amulet to deploy mHealth apps in the field. In the past five years the team conducted 11 studies in the lab and in the field, involving 204 participants and collecting over 77,780 hours of sensor data. We describe the technical issues the team encountered and the lessons they learned, and conclude with a set of recommendations. We anticipate the experience described herein will be useful for the development of other research-oriented computing platforms. It should also be useful for researchers interested in developing and deploying mHealth applications, whether with the Amulet system or with other wearable platforms.more » « less