skip to main content


Search for: All records

Award ID contains: 1831918

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background:

    Sleep disturbances are associated with adverse perinatal outcomes. Thus, it is necessary to understand the continuous patterns of sleep during pregnancy and how moderators such as maternal age and pre-pregnancy body mass index impact sleep.

    Objective:

    This study aimed to examine the continuous changes in sleep parameters objectively (i.e. sleep stages, total sleep time, and awake time) in pregnant women and to describe the impact of maternal age and/or pre-pregnancy body mass index as moderators of these objective sleep parameters.

    Design:

    This was a longitudinal observational design.

    Methods:

    Seventeen women with a singleton pregnancy participated in this study. Mixed model repeated measures were used to describe weekly patterns, while aggregated changes describe these three pregnancy periods (10–19, 20–29, and 30–39 gestational weeks).

    Results:

    For the weekly patterns, we found significantly decreased deep (1.26 ± 0.18 min/week, p < 0.001), light (0.72 ± 0.37 min/week, p = 0.05), and total sleep time (1.56 ± 0.47 min/week, p < 0.001) as well as increased awake time (1.32 ± 0.34 min/week, p < 0.001). For the aggregated changes, we found similar patterns to weekly changes. Women (⩾30 years) had an even greater decrease in deep sleep (1.50 ± 0.22 min/week, p < 0.001) than those younger (0.84 ± 0.29 min/week, p = 0.04). Women who were both overweight/obese and ⩾30 years experienced an increase in rapid eye movement sleep (0.84 ± 0.31 min/week, p = 0.008), but those of normal weight (<30 years) did not.

    Conclusion:

    This study appears to be the first to describe continuous changes in sleep parameters during pregnancy at home. Our study provides preliminary evidence that sleep parameters could be potential non-invasive physiological markers predicting perinatal outcomes.

     
    more » « less
  2. Background

    Maternal loneliness is associated with adverse physical and mental health outcomes for both the mother and her child. Detecting maternal loneliness noninvasively through wearable devices and passive sensing provides opportunities to prevent or reduce the impact of loneliness on the health and well-being of the mother and her child.

    Objective

    The aim of this study is to use objective health data collected passively by a wearable device to predict maternal (social) loneliness during pregnancy and the postpartum period and identify the important objective physiological parameters in loneliness detection.

    Methods

    We conducted a longitudinal study using smartwatches to continuously collect physiological data from 31 women during pregnancy and the postpartum period. The participants completed the University of California, Los Angeles (UCLA) loneliness questionnaire in gestational week 36 and again at 12 weeks post partum. Responses to this questionnaire and background information of the participants were collected through our customized cross-platform mobile app. We leveraged participants’ smartwatch data from the 7 days before and the day of their completion of the UCLA questionnaire for loneliness prediction. We categorized the loneliness scores from the UCLA questionnaire as loneliness (scores≥12) and nonloneliness (scores<12). We developed decision tree and gradient-boosting models to predict loneliness. We evaluated the models by using leave-one-participant-out cross-validation. Moreover, we discussed the importance of extracted health parameters in our models for loneliness prediction.

    Results

    The gradient boosting and decision tree models predicted maternal social loneliness with weighted F1-scores of 0.897 and 0.872, respectively. Our results also show that loneliness is highly associated with activity intensity and activity distribution during the day. In addition, resting heart rate (HR) and resting HR variability (HRV) were correlated with loneliness.

    Conclusions

    Our results show the potential benefit and feasibility of using passive sensing with a smartwatch to predict maternal loneliness. Our developed machine learning models achieved a high F1-score for loneliness prediction. We also show that intensity of activity, activity pattern, and resting HR and HRV are good predictors of loneliness. These results indicate the intervention opportunities made available by wearable devices and predictive models to improve maternal well-being through early detection of loneliness.

     
    more » « less
  3. The proliferation of Internet-connected health devices and the widespread availability of mobile connectivity have resulted in a wealth of reliable digital health data and the potential for delivering just-in-time interventions. However, leveraging these opportunities for health research requires the development and deployment of mobile health (mHealth) applications, which present significant technical challenges for researchers. While existing mHealth solutions have made progress in addressing some of these challenges, they often fall short in terms of time-to-use, affordability, and flexibility for personalization and adaptation. ZotCare aims to address these limitations by offering ready-to-use and flexible services, providing researchers with an accessible, cost-effective, and adaptable solution for their mHealth studies. This article focuses on ZotCare’s service orchestration and highlights its capabilities in creating a programmable environment for mHealth research. Additionally, we showcase several successful research use cases that have utilized ZotCare, both in the past and in ongoing projects. Furthermore, we provide resources and information for researchers who are considering ZotCare as their mHealth research solution.

     
    more » « less
  4. How women experience pregnancy as uplifting or a hassle is related to their mental and physical health and birth outcomes. Pregnancy during a pandemic introduces new hassles, but may offer benefits that could affect how women perceive their pregnancy. Surveying 118 ethnically and racially diverse pregnant women, we explore (1) women’s traditional and pandemic-related pregnancy uplifts and hassles and (2) how these experiences of pregnancy relate to their feelings of loneliness, positivity, depression, and anxiety. Regressions show that women who experience more intense feelings of uplifts than hassles also feel more positive, less lonely, and have better mental health. Findings suggest that focusing on positive aspects of being pregnant, in general and during a pandemic, might be beneficial for pregnant women’s mental health.

     
    more » « less
  5. Continuous monitoring of perinatal women in a descriptive case study allowed us the opportunity to examine the time during which the COVID-19 infection led to physiological changes in two low-income pregnant women. An important component of this study was the use of a wearable sensor device, the Oura ring, to monitor and record vital physiological parameters during sleep. Two women in their second and third trimesters, respectively, were selected based on a positive COVID-19 diagnosis. Both women were tested using the polymerase chain reaction method to confirm the presence of the virus during which time we were able to collect these physiological data. In both cases, we observed 3–6 days of peak physiological changes in resting heart rate (HR), heart rate variability (HRV), and respiratory rate (RR), as well as sleep surrounding the onset of COVID-19 symptoms. The pregnant woman in her third trimester showed a significant increase in resting HR ( p = 0.006) and RR ( p = 0.048), and a significant decrease in HRV ( p = 0.027) and deep sleep duration ( p = 0.029). She reported experiencing moderate COVID-19 symptoms and did not require hospitalization. At 38 weeks of gestation, she had a normal delivery and gave birth to a healthy infant. The participant in her second trimester showed similar physiological changes during the 3-day peak period. Importantly, these changes appeared to return to the pre-peak levels. Common symptoms reported by both cases included loss of smell and nasal congestion, with one losing her sense of taste. Results suggest the potential to use the changes in cardiorespiratory responses and sleep for real-time monitoring of health and well-being during pregnancy. 
    more » « less