skip to main content


Title: A coadapted KNL1 and spindle assembly checkpoint axis orchestrates precise mitosis in Arabidopsis

The kinetochore scaffold 1 (KNL1) protein recruits spindle assembly checkpoint (SAC) proteins to ensure accurate chromosome segregation during mitosis. Despite such a conserved function among eukaryotic organisms, its molecular architectures have rapidly evolved so that the functional mode of plant KNL1 is largely unknown. To understand how SAC signaling is regulated at kinetochores, we characterized the function of theKNL1gene inArabidopsis thaliana. The KNL1 protein was detected at kinetochores throughout the mitotic cell cycle, and nullknl1mutants were viable and fertile but exhibited severe vegetative and reproductive defects. The mutant cells showed serious impairments of chromosome congression and segregation, that resulted in the formation of micronuclei. In the absence of KNL1, core SAC proteins were no longer detected at the kinetochores, and the SAC was not activated by unattached or misaligned chromosomes. Arabidopsis KNL1 interacted with SAC essential proteins BUB3.3 and BMF3 through specific regions that were not found in known KNL1 proteins of other species, and recruited them independently to kinetochores. Furthermore, we demonstrated that upon ectopic expression, the KNL1 homolog from the dicot tomato was able to functionally substitute KNL1 inA.thaliana, while others from the monocot rice or moss associated with kinetochores but were not functional, as reflected by sequence variations of the kinetochore proteins in different plant lineages. Our results brought insights into understanding the rapid evolution and lineage-specific connection between KNL1 and the SAC signaling molecules.

 
more » « less
Award ID(s):
1920358
PAR ID:
10486086
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
National Academy of Science
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
2
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Centromeres are long, often repetitive regions of genomes that bind kinetochore proteins and ensure normal chromosome segregation. Engineering centromeres that function in vivo has proven to be difficult. Here we describe a tethering approach that activates functional maize centromeres at synthetic sequence arrays. A LexA-CENH3 fusion protein was used to recruit native Centromeric Histone H3 (CENH3) to long arrays of LexO repeats on a chromosome arm. Newly recruited CENH3 was sufficient to organize functional kinetochores that caused chromosome breakage, releasing chromosome fragments that were passed through meiosis and into progeny. Several fragments formed independent neochromosomes with centromeres localized over the LexO repeat arrays. The new centromeres were self-sustaining and transmitted neochromosomes to subsequent generations in the absence of the LexA-CENH3 activator. Our results demonstrate the feasibility of using synthetic centromeres for karyotype engineering applications. 
    more » « less
  2. Accurate chromosome segregation is vital for cell and organismal viability. The mitotic spindle, a bipolar macromolecular machine composed largely of dynamic microtubules, is responsible for chromosome segregation during each cell replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed in which each pair of chromatids is attached to microtubules from opposite spindle poles. In this bipolar configuration pulling forces from the dynamic microtubules can generate tension across the sister kinetochores. The tension status acts as a signal that can destabilize aberrant kinetochore-microtubule attachments and reinforces correct, bipolar connections. Historically it has been challenging to isolate the specific role of tension in mitotic processes due to the interdependency of attachment and tension status at kinetochores. Recent technical and experimental advances have revealed new insights into how tension functions during mitosis. Here we summarize the evidence that tension serves as a biophysical signal that unifies multiple aspects of kinetochore and centromere function to ensure accurate chromosome segregation.

     
    more » « less
  3. The spindle assembly checkpoint (SAC) prevents anaphase until all kinetochores attach to the spindle. Each mammalian kinetochore binds many microtubules, but how many attached microtubules are required to turn off the checkpoint, and how the kinetochore monitors microtubule numbers, are not known and are central to understanding SAC mechanisms and function. To address these questions, here we systematically tune and fix the fraction of Hec1 molecules capable of microtubule binding. We show that Hec1 molecules independently bind microtubules within single kinetochores, but that the kinetochore does not independently process attachment information from different molecules. Few attached microtubules (20% occupancy) can trigger complete Mad1 loss, and Mad1 loss is slower in this case. Finally, we show using laser ablation that individual kinetochores detect changes in microtubule binding, not in spindle forces that accompany attachment. Thus, the mammalian kinetochore responds specifically to the binding of each microtubule and counts microtubules as a single unit in a sensitive and switch-like manner. This may allow kinetochores to rapidly react to early attachments and maintain a robust SAC response despite dynamic microtubule numbers.

     
    more » « less
  4. Abstract

    The mitotic checkpoint (also called spindle assembly checkpoint, SAC) is a signaling pathway that safeguards proper chromosome segregation. Correct functioning of the SAC depends on adequate protein concentrations and appropriate stoichiometries between SAC proteins. Yet very little is known about the regulation of SAC gene expression. Here, we show in the fission yeastSchizosaccharomyces pombethat a combination of short mRNA half‐lives and long protein half‐lives supports stable SAC protein levels. For the SAC genesmad2+andmad3+, their short mRNA half‐lives are caused, in part, by a high frequency of nonoptimal codons. In contrast,mad1+mRNA has a short half‐life despite a higher frequency of optimal codons, and despite the lack of known RNA‐destabilizing motifs. Hence, different SAC genes employ different strategies of expression. We further show that Mad1 homodimers form co‐translationally, which may necessitate a certain codon usage pattern. Taken together, we propose that the codon usage of SAC genes is fine‐tuned to ensure proper SAC function. Our work shines light on gene expression features that promote spindle assembly checkpoint function and suggests that synonymous mutations may weaken the checkpoint.

     
    more » « less
  5. Zea mays (maize) is both an agronomically important crop and a powerful genetic model system with an extensive molecular toolkit and genomic resources. With these tools, maize is an optimal system for cytogenetic study, particularly in the investigation of chromosome segregation. Here, we review the advances made in maize chromosome segregation, specifically in the regulation and dynamic assembly of the mitotic and meiotic spindle, the inheritance and mechanisms of the abnormal chromosome variant Ab10, the regulation of chromosome–spindle interactions via the spindle assembly checkpoint, and the function of kinetochore proteins that bridge chromosomes and spindles. In this review, we discuss these processes in a species-specific context including features that are both conserved and unique to Z. mays. Additionally, we highlight new protein structure prediction tools and make use of these tools to identify several novel kinetochore and spindle assembly checkpoint proteins in Z. mays.

     
    more » « less