skip to main content


Title: The Criterion for Chaos in Three-planet Systems
Abstract

We establish the criterion for chaos in three-planet systems, for systems similar to those discovered by the Kepler spacecraft. Our main results are as follows: (i) The simplest criterion, which is based on overlapping mean motion resonances (MMRs), only agrees with numerical simulations at a very crude level. (ii) Much greater accuracy is attained by considering neighboring MMRs that do not overlap. We work out the widths of the chaotic zones around each of the neighbors, and also provide simple approximate expressions for the widths. (iii) Even greater accuracy is provided by the overlap of three-body resonances (3BRs), which accounts for the fine-grained structure seen in maps fromN-body simulations, and also predicts Lyapunov times. From previous studies, it is unclear whether interplanetary chaos should be attributed to the overlap of MMRs or of 3BRs. We show that the two apparently contradictory viewpoints are in fact consistent: both predict the same criterion for chaos. (iv) We compare the predicted criterion with high-resolution maps of chaos fromN-body simulations, and show that they agree at a high level of detail.

 
more » « less
NSF-PAR ID:
10486216
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
932
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 61
Size(s):
["Article No. 61"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Celletti, Alessandra ; Beaugé, Cristian ; Galeş, Cătălin ; Lemaître, Anne (Ed.)
    Perturbative analyses of planetary resonances commonly predict singularities and/or divergences of resonance widths at very low and very high eccentricities. We have recently re-examined the nature of these divergences using non-perturbative numerical analyses, making use of Poincaré sections but from a different perspective relative to previous implementations of this method. This perspective reveals fine structure of resonances which otherwise remains hidden in conventional approaches, including analytical, semi-analytical and numerical-averaging approaches based on the critical resonant angle. At low eccentricity, first order resonances do not have diverging widths but have two asymmetric branches leading away from the nominal resonance location. A sequence of structures called ``low-eccentricity resonant bridges" connecting neighboring resonances is revealed. At planet-grazing eccentricity, the true resonance width is non-divergent. At higher eccentricities, the new results reveal hitherto unknown resonant structures and show that these parameter regions have a loss of some -- though not necessarily entire -- resonance libration zones to chaos. The chaos at high eccentricities was previously attributed to the overlap of neighboring resonances. The new results reveal the additional role of bifurcations and co-existence of phase-shifted resonance zones at higher eccentricities. By employing a geometric point of view, we relate the high eccentricity phase space structures and their transitions to the shapes of resonant orbits in the rotating frame. We outline some directions for future research to advance understanding of the dynamics of mean motion resonances. 
    more » « less
  2. ABSTRACT Mean motion resonances are important in the analysis and understanding of the dynamics of planetary systems. While perturbative approaches have been dominant in many previous studies, recent non-perturbative approaches have revealed novel properties in the low-eccentricity regime for interior mean motion resonances of Jupiter in the fundamental model of the circular planar restricted three-body model. Here, we extend the non-perturbative investigation to exterior mean motion resonances in the low-eccentricity regime (up to about 0.1) and for perturber mass in the range of ∼5 × 10−5 to 1 × 10−3 (in units of the central mass). Our results demonstrate that first-order exterior resonances have two branches at low eccentricity as well as low-eccentricity bridges connecting neighbouring first-order resonances. With increasing perturber mass, higher order resonances dissolve into chaos, whereas low-order resonances persist with larger widths in their radial extent but smaller azimuthal widths. For low-order resonances, we also detect secondary resonances arising from small-integer commensurabilities between resonant librations and the synodic frequency. These secondary resonances contribute significantly to generating the chaotic sea that typically occurs near mean motion resonances of higher mass perturbers. 
    more » « less
  3. Abstract

    Although resonant planets have orbital periods near commensurability, resonance is also dictated by other factors, such as the planets’ eccentricities and masses, and therefore must be confirmed through a study of the system’s dynamics. Here, we perform such a study for five multiplanet systems: Kepler-226, Kepler-254, Kepler-363, Kepler-1542, and K2-32. For each system, we run a suite ofN-body simulations that span the full parameter space that is consistent with the constrained orbital and planetary properties. We study the stability of each system and look for resonances based on the libration of the critical resonant angles. We find strong evidence for a two-body resonance in each system; we confirm a 3:2 resonance between Kepler-226c and Kepler-226d, confirm a 3:2 resonance between Kepler-254c and Kepler-254d, and confirm a three-body 1:2:3 resonant chain between the three planets of Kepler-363. We explore the dynamical history of two of these systems and find that these resonances most likely formed without migration. Migration leads to the libration of the three-body resonant angle, but these angles circulate in both Kepler-254 and Kepler-363. Applying our methods to additional near-resonant systems could help us identify which systems are truly resonant or nonresonant and which systems require additional follow-up analysis.

     
    more » « less
  4. Abstract

    The most distant known trans-Neptunian objects (TNOs), those with perihelion distance above 38 au and semimajor axis above 150 au, are of interest for their potential to reveal past, external, or present but unseen perturbers. Realizing this potential requires understanding how the known planets influence their orbital dynamics. We use a recently developed Poincaré mapping approach for orbital phase space studies of the circular planar restricted three-body problem, which we have extended to the case of the 3D restricted problem withNplanetary perturbers. With this approach, we explore the dynamical landscape of the 23 most distant TNOs under the perturbations of the known giant planets. We find that, counter to common expectations, almost none of these TNOs are far removed from Neptune’s resonances. Nearly half (11) of these TNOs have orbits consistent with stable libration in Neptune’s resonances; in particular, the orbits of TNOs 148209 and 474640 overlap with Neptune’s 20:1 and 36:1 resonances, respectively. Five objects can be ruled currently nonresonant, despite their large orbital uncertainties, because our mapping approach determines the resonance boundaries in angular phase space in addition to semimajor axis. Only three objects are in orbital regions not appreciably affected by resonances: Sedna, 2012 VP113 and 2015 KG163. Our analysis also demonstrates that Neptune’s resonances impart a modest (few percent) nonuniformity in the longitude of perihelion distribution of the currently observable distant TNOs. While not large enough to explain the observed clustering, this small dynamical sculpting of the perihelion longitudes could become relevant for future, larger TNO data sets.

     
    more » « less
  5. Abstract

    The study of orbital resonances allows for the constraint of planetary properties of compact systems. K2-138 is an early K-type star with six planets, five of which have been proposed to be in the longest chain of 3:2 mean motion resonances. To observe and potentially verify the resonant behavior of K2-138's planets, we runN-body simulations using previously measured parameters. Through our analysis, we find that 99.2% of our simulations result in a chain of 3:2 resonances, although only 11% of them show a five-planet resonance chain. We find that we are able to use resonances to constrain the orbital periods and masses of the planets. We explore the possibility of this system forming in situ and through disk migration, and we investigate the potential compositions of each planet using a planet structure code.

     
    more » « less