It is increasingly interesting to model the relationship between two sets of high-dimensional measurements with potentially high correlations. Canonical correlation analysis (CCA) is a classical tool that explores the dependency of two multivariate random variables and extracts canonical pairs of highly correlated linear combinations. Driven by applications in genomics, text mining, and imaging research, among others, many recent studies generalize CCA to high-dimensional settings. However, most of them either rely on strong assumptions on covariance matrices, or do not produce nested solutions. We propose a new sparse CCA (SCCA) method that recasts high-dimensional CCA as an iterative penalized least squares problem. Thanks to the new iterative penalized least squares formulation, our method directly estimates the sparse CCA directions with efficient algorithms. Therefore, in contrast to some existing methods, the new SCCA does not impose any sparsity assumptions on the covariance matrices. The proposed SCCA is also very flexible in the sense that it can be easily combined with properly chosen penalty functions to perform structured variable selection and incorporate prior information. Moreover, our proposal of SCCA produces nested solutions and thus provides great convenient in practice. Theoretical results show that SCCA can consistently estimate the true canonical pairs with an overwhelming probability in ultra-high dimensions. Numerical results also demonstrate the competitive performance of SCCA.
more » « less- PAR ID:
- 10486237
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrics
- Volume:
- 75
- Issue:
- 3
- ISSN:
- 0006-341X
- Format(s):
- Medium: X Size: p. 734-744
- Size(s):
- p. 734-744
- Sponsoring Org:
- National Science Foundation
More Like this
-
With the advent of massive data sets much of the computational science and engineering community has moved toward data-intensive approaches in regression and classification. However, these present significant challenges due to increasing size, complexity and dimensionality of the problems. In particular, covariance matrices in many cases are numerically unstable and linear algebra shows that often such matrices cannot be inverted accurately on a finite precision computer. A common ad hoc approach to stabilizing a matrix is application of a so-called nugget. However, this can change the model and introduce error to the original solution. It is well known from numerical analysis that ill-conditioned matrices cannot be accurately inverted. In this paper we develop a multilevel computational method that scales well with the number of observations and dimensions. A multilevel basis is constructed adapted to a kD-tree partitioning of the observations. Numerically unstable covariance matrices with large condition numbers can be transformed into well conditioned multilevel ones without compromising accuracy. Moreover, it is shown that the multilevel prediction exactly solves the Best Linear Unbiased Predictor (BLUP) and Generalized Least Squares (GLS) model, but is numerically stable. The multilevel method is tested on numerically unstable problems of up to 25 dimensions. Numerical results show speedups of up to 42,050 times for solving the BLUP problem, but with the same accuracy as the traditional iterative approach. For very ill-conditioned cases the speedup is infinite. In addition, decay estimates of the multilevel covariance matrices are derived based on high dimensional interpolation techniques from the field of numerical analysis. This work lies at the intersection of statistics, uncertainty quantification, high performance computing and computational applied mathematics.more » « less
-
Background Developing appropriate computational tools to distill biological insights from large‐scale gene expression data has been an important part of systems biology. Considering that gene relationships may change or only exist in a subset of collected samples, biclustering that involves clustering both genes and samples has become in‐creasingly important, especially when the samples are pooled from a wide range of experimental conditions.
Methods In this paper, we introduce a new biclustering algorithm to find subsets of genomic expression features (EFs) (e.g., genes, isoforms, exon inclusion) that show strong “group interactions” under certain subsets of samples. Group interactions are defined by strong partial correlations, or equivalently, conditional dependencies between EFs after removing the influences of a set of other functionally related EFs. Our new biclustering method, named SCCA‐BC, extends an existing method for group interaction inference, which is based on sparse canonical correlation analysis (SCCA) coupled with repeated random partitioning of the gene expression data set.
Results SCCA‐BC gives sensible results on real data sets and outperforms most existing methods in simulations. Software is available at
https://github.com/pimentel/scca‐bc .Conclusions SCCA‐BC seems to work in numerous conditions and the results seem promising for future extensions. SCCA‐BC has the ability to find different types of bicluster patterns, and it is especially advantageous in identifying a bicluster whose elements share the same progressive and multivariate normal distribution with a dense covariance matrix.
-
Canonical correlation analysis (CCA) is a technique for measuring the association between two multivariate data matrices. A regularized modification of canonical correlation analysis (RCCA) which imposes an [Formula: see text] penalty on the CCA coefficients is widely used in applications with high-dimensional data. One limitation of such regularization is that it ignores any data structure, treating all the features equally, which can be ill-suited for some applications. In this article we introduce several approaches to regularizing CCA that take the underlying data structure into account. In particular, the proposed group regularized canonical correlation analysis (GRCCA) is useful when the variables are correlated in groups. We illustrate some computational strategies to avoid excessive computations with regularized CCA in high dimensions. We demonstrate the application of these methods in our motivating application from neuroscience, as well as in a small simulation example.more » « less
-
We study the stochastic optimization of canonical correlation analysis (CCA), whose objective is nonconvex and does not decouple over training samples. Although several stochastic gradient based optimization algorithms have been recently proposed to solve this problem, no global convergence guarantee was provided by any of them. Inspired by the alternating least squares/power iterations formulation of CCA, and the shift-and-invert preconditioning method for PCA, we propose two globally convergent meta-algorithms for CCA, both of which transform the original problem into sequences of least squares problems that need only be solved approximately. We instantiate the meta-algorithms with state-of-the-art SGD methods and obtain time complexities that significantly improve upon that of previous work. Experimental results demonstrate their superior performance.more » « less
-
Summary Partial least squares regression has been an alternative to ordinary least squares for handling multicollinearity in several areas of scientific research since the 1960s. It has recently gained much attention in the analysis of high dimensional genomic data. We show that known asymptotic consistency of the partial least squares estimator for a univariate response does not hold with the very large p and small n paradigm. We derive a similar result for a multivariate response regression with partial least squares. We then propose a sparse partial least squares formulation which aims simultaneously to achieve good predictive performance and variable selection by producing sparse linear combinations of the original predictors. We provide an efficient implementation of sparse partial least squares regression and compare it with well-known variable selection and dimension reduction approaches via simulation experiments. We illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene expression and genomewide binding data.