skip to main content


Search for: All records

Award ID contains: 1613154

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    It is increasingly interesting to model the relationship between two sets of high-dimensional measurements with potentially high correlations. Canonical correlation analysis (CCA) is a classical tool that explores the dependency of two multivariate random variables and extracts canonical pairs of highly correlated linear combinations. Driven by applications in genomics, text mining, and imaging research, among others, many recent studies generalize CCA to high-dimensional settings. However, most of them either rely on strong assumptions on covariance matrices, or do not produce nested solutions. We propose a new sparse CCA (SCCA) method that recasts high-dimensional CCA as an iterative penalized least squares problem. Thanks to the new iterative penalized least squares formulation, our method directly estimates the sparse CCA directions with efficient algorithms. Therefore, in contrast to some existing methods, the new SCCA does not impose any sparsity assumptions on the covariance matrices. The proposed SCCA is also very flexible in the sense that it can be easily combined with properly chosen penalty functions to perform structured variable selection and incorporate prior information. Moreover, our proposal of SCCA produces nested solutions and thus provides great convenient in practice. Theoretical results show that SCCA can consistently estimate the true canonical pairs with an overwhelming probability in ultra-high dimensions. Numerical results also demonstrate the competitive performance of SCCA.

     
    more » « less
  2. Sufficient dimension reduction (SDR) is a very useful concept for exploratory analysis and data visualization in regression, especially when the number of covariates is large. Many SDR methods have been proposed for regression with a continuous response, where the central subspace (CS) is the target of estimation. Various conditions, such as the linearity condition and the constant covariance condition, are imposed so that these methods can estimate at least a portion of the CS. In this paper we study SDR for regression and discriminant analysis with categorical response. Motivated by the exploratory analysis and data visualization aspects of SDR, we propose a new geometric framework to reformulate the SDR problem in terms of manifold optimization and introduce a new concept called Maximum Separation Subspace (MASES). The MASES naturally preserves the “sufficiency” in SDR without imposing additional conditions on the predictor distribution, and directly inspires a semi-parametric estimator. Numerical studies show MASES exhibits superior performance as compared with competing SDR methods in specific settings. 
    more » « less