skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recycling Gadolinium from Hospital Effluent via Electrochemical Aerosol Formation
The increasing use of Gd-based contrast agents for magnetic resonance imaging at hospitals and research centers has led to the rapidly growing demand for Gd and Gd anomalies in surface waters. Recycling Gd from hospital effluents could simultaneously address Gd demand and severe concerns about Gd contamination. Here, we present a study relevant to the extraction and preconcentration of Gd from hospital effluents that contain parts per billion-level Gd via the ligand-assisted electrochemical aerosol formation (LEAF) process. We demonstrate that the LEAF process extracts ∼75% GdIII from 50 ppb Gd-spiked water samples, including diluted artificial urine samples while preconcentrating Gd by up to 390-fold. Mechanistic studies confirm that the surface activity of the Gd-binding ligand is essential for successful LEAF extraction. The ligands are recyclable by performing electrophoretic separation in an origami paper device, followed by water extraction. The steep pH gradient and strong electric field in the origami paper device enabled the dissociation of Gd-ligand complexes, spatial separation of Gd and ligand, and precipitation of GdIII as Gd(OH)3. Approximately 80% of the ligands were recovered from the paper device by water extraction and reused in subsequent extraction cycles. This straightforward and green method could also be adapted to other aqueous rare earth metal wastes in the future.  more » « less
Award ID(s):
1943737
PAR ID:
10486290
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
ACS ES&T Engineering
ISSN:
2690-0645
Subject(s) / Keyword(s):
rare earth element Gd recycling aerosol extraction electrophoretic separation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Four tripodal carbamoylmethylphosphine oxide (CMPO)-based ligands are reported here and assessed with regard to lanthanide (Ln) coordination chemistry and selective extraction of lanthanide ions from aqueous solution. Inspired by previous liquid–liquid extraction studies that suggested a preference for terbium( iii ), the current work further probes the extraction behavior of a tris-(2-aminoethyl)amine (TREN) capped, ethoxy substituted CMPO ligand with respect to the entire series of lanthanides. Upon confirmation of Tb 3+ extraction selectivity versus the whole series, experiments were conducted to assess the effect of increasing the alkyl chain length within the ligand TREN cap, as well as changing the CMPO substituents by replacing the ethoxy groups with more hydrophobic phenyl groups to promote solubility in the organic extraction solvent. Extraction efficiencies remained low for most lanthanides upon increasing the cap size, with % E values consistently around 5%, and a complete loss of Tb 3+ preference was noted with a decrease in % E from 18% to 3.5%. For the agent employing the original, smaller TREN cap but with phenyl substituents on the CMPO units, an increase in extraction toward the middle of the row was again observed, albeit modest, with relatively high % E values for both Gd 3+ and Tb 3+ versus the other lanthanides (13 and 11%, respectively). A more dramatic extraction selectivity for the phenyl substituted ligand was achieved upon modification of the ligand to metal ratio, with a 100 : 1 ratio resulting in a near linear decrease in % E from 41% for La 3+ to 3.7% for Lu 3+ . Finally, modification of the TREN capping scaffold by adding an oxygen atom to the central nitrogen led to consistently low % E values, revealing the effect of TREN cap oxidation on Ln extraction for this tripodal CMPO ligand system. 
    more » « less
  2. Interest in the isolation and recovery of lanthanide and actinide metals has gained recent attention due to their increasing use in everyday materials ( e.g. batteries, screens, sensors) as well as their application in alternative energy production ( e.g. nuclear power). However, the purification of these metals, both from recycled materials and raw sources, is daunting due to the similar chemical properties of these elements. This review focuses on the use of supramolecular, preorganized organic ligands as extraction agents in liquid–liquid extraction systems to achieve the separation and recovery of f-elements. For the purposes of this review, “supramolecular ligands” are those that append two or more chelating groups to a scaffold. The synthesis of each ligand is presented, along with selections of the extraction results from each compound. When appropriate, the extraction results of the supramolecular, preorganized ligands are compared with their monomeric, commercial counterparts. 
    more » « less
  3. Methods to separate circulating tumor cells (CTCs) from blood samples were intensively researched in order to understand the metastatic process and develop corresponding clinical assays. However current methods faced challenges that stemmed from CTCs' heterogeneity in their biological markers and physical morphologies. To this end, we developed integrated ferrohydrodynamic cell separation (iFCS), a scheme that separated CTCs independent of their surface antigen expression and physical characteristics. iFCS integrated both diamagnetophoresis of CTCs and magnetophoresis of blood cells together via a magnetic liquid medium, ferrofluid, whose magnetization could be tuned by adjusting its magnetic volume concentration. In this paper, we presented the fundamental theory of iFCS and its specific application in CTC separation. Governing equations of iFCS were developed to guide its optimization process. Three critical parameters that affected iFCS's cell separation performance were determined and validated theoretically and experimentally. These parameters included the sample flow rate, the volumetric concentration of magnetic materials in the ferrofluid, and the gradient of the magnetic flux density. We determined these optimized parameters in an iFCS device that led to a high recovery CTC separation in both spiked and clinical samples. 
    more » « less
  4. null (Ed.)
    A mechanistic understanding of the influence of the surface properties of engineered nanomaterials on their interactions with cells is essential for designing materials for applications such as bioimaging and drug delivery as well as for assessing nanomaterial safety. Ligand-coated gold nanoparticles have been widely investigated because their highly tunable surface properties enable investigations into the effect of ligand functionalization on interactions with biological systems. Lipophilic ligands have been linked to adverse biological outcomes through membrane disruption, but the relationship between ligand lipophilicity and membrane interactions is not well understood. Here, we use a library of cationic ligands coated on 2 nm gold nanoparticles to probe the impact of ligand end group lipophilicity on interactions with supported phosphatidylcholine lipid bilayers as a model for cytoplasmic membranes. Nanoparticle adsorption to and desorption from the model membranes were investigated by quartz crystal microbalance with dissipation monitoring. We find that nanoparticle adsorption to model membranes increases with ligand lipophilicity. The effects of ligand structure on gold nanoparticle attachment were further analyzed using atomistic molecular dynamics simulations, which showed that the increase in ligand lipophilicity promotes ligand intercalation into the lipid bilayer. Together, the experimental and simulation results could be described by a two-state model that accounts for the initial attachment and subsequent conversion to a quasi-irreversibly bound state. We find that only nanoparticles coated with the most lipophilic ligands in our nanoparticle library undergo conversion to the quasi-irreversible state. We propose that the initial attachment is governed by interaction between the ligands and phospholipid tail groups, whereas conversion into the quasi-irreversibly bound state reflects ligand intercalation between phospholipid tail groups and eventual lipid extraction from the bilayer. The systematic variation of ligand lipophilicity enabled us to demonstrate that the lipophilicity of cationic ligands correlates with nanoparticle-bilayer adsorption and suggested that changing the nonpolar ligand R group promotes a mechanism of ligand intercalation into the bilayer associated with irreversible adsorption. 
    more » « less
  5. Chiral nanostructures have been attracting extensive interest in recent years primarily because of the unique materials properties that can be exploited for diverse applications. In this study, gold Janus nanoparticles, with hexanethiolates and 3-mercapto-1,2-propanediol segregated on the two hemispheres of the metal cores (dia. 2.7 ± 0.4 nm), self-assembled into vesicle-like, hollow nanostructures in both water and organic media, and exhibited apparent plasmonic circular dichroism (PCD) absorption in the visible range. This was in contrast to individual Janus nanoparticles, bulk-exchange nanoparticles where the two ligands were homogeneously mixed on the nanoparticle surface, or nanoparticles capped with only one kind of ligand. The PCD signals were found to become intensified with increasing coverage of the 3-mercapto-1,2-propanediol ligands on the nanoparticle surface. This was accounted for by the dipolar property of the structurally asymmetrical Janus nanoparticles, and theoretical simulations based on first principles calculations showed that when the nanoparticle dipoles self-assembled onto the surface of a hollow sphere, a vertex was formed which gave rise to the unique chiral characteristics. The resulting chiral nanoparticle vesicles could be exploited for the separation of optical enantiomers, as manifested in the selective identification and separation of d -alanine from the l -isomer. 
    more » « less