skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Effects of grassland controlled burning on symbiotic skin microbes in Neotropical amphibians
Climate change has led to an alarming increase in the frequency and severity of wildfires worldwide. While it is known that amphibians have physiological characteristics that make them highly susceptible to fire, the specific impacts of wildfires on their symbiotic skin bacterial communities (i.e., bacteriomes) and infection by the deadly chytrid fungus, Batrachochytrium dendrobatidis, remain poorly understood. Here, we address this research gap by evaluating the effects of fire on the amphibian skin bacteriome and the subsequent risk of chytridiomycosis. We sampled the skin bacteriome of the Neotropical species Scinax squalirostris and Boana leptolineata in fire and control plots before and after experimental burnings. Fire was linked with a marked increase in bacteriome beta dispersion, a proxy for skin microbial dysbiosis, alongside a trend of increased pathogen loads. By shedding light on the effects of fire on amphibian skin bacteriomes, this study contributes to our broader understanding of the impacts of wildfires on vulnerable vertebrate species.  more » « less
Award ID(s):
2303908
PAR ID:
10486324
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundHost microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbeBatrachochytrium dendrobatidis(Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species. ResultsIntensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence inIschnocnema henseliibut no Bd detections inHaddadus binotatus.Haddadus binotatuscarried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization. ConclusionsOur findings suggest that community structure of the bacteriome might drive Bd resistance inH. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses. 
    more » « less
  2. Abstract Microbial diversity positively influences community resilience of the host microbiome. However, extinction risk factors such as habitat specialization, narrow environmental tolerances, and exposure to anthropogenic disturbance may homogenize host-associated microbial communities critical for stress responses including disease defense. In a dataset containing 43 threatened and 90 non-threatened amphibian species across two biodiversity hotspots (Brazil’s Atlantic Forest and Madagascar), we found that threatened host species carried lower skin bacterial diversity, after accounting for key environmental and host factors. The consistency of our findings across continents suggests the broad scale at which low bacteriome diversity may compromise pathogen defenses in species already burdened with the threat of extinction. 
    more » « less
  3. Abstract Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk. While climatic trends increased the frequency of high-risk fire-weather by 2.5-fold, the combination of this trend with wildland-urban interface expansion led to a 4.1-fold increase in the frequency of conditions conducive to extreme-impact wildfires from 1990 to 2022 across California. More than three-quarters of extreme-impact wildfires—defined as the top 20 largest, most destructive, or deadliest events on record—originated within 1 km from the wildland-urban interface. The deadliest and most destructive wildfires—90% of which were human-caused—primarily occurred in the fall, while the largest wildfires—56% of which were human-caused—mostly took place in the summer. By integrating human activity and climate change impacts, we provide a holistic understanding of human-centric wildfire risk, crucial for policy development. 
    more » « less
  4. Skin microbial communities are an essential part of host health and can play a role in mitigating disease. Host and environmental factors can shape and alter these microbial communities and, therefore, we need to understand to what extent these factors influence microbial communities and how this can impact disease dynamics. Microbial communities have been studied in amphibian systems due to skin microbial communities providing some resistance to the amphibian chytrid fungus, Batrachochytrium dendrobatidis . However, we are only starting to understand how host and environmental factors shape these communities for amphibians. In this study, we examined whether amphibian skin bacterial communities differ among host species, host infection status, host developmental stage, and host habitat. We collected skin swabs from tadpoles and adults of three Ranid frog species ( Lithobates spp.) at the Mianus River Gorge Preserve in Bedford, New York, USA, and used 16S rRNA gene amplicon sequencing to determine bacterial community composition. Our analysis suggests amphibian skin bacterial communities change across host developmental stages, as has been documented previously. Additionally, we found that skin bacterial communities differed among Ranid species, with skin communities on the host species captured in streams or bogs differing from the communities of the species captured on land. Thus, habitat use of different species may drive differences in host-associated microbial communities for closely-related host species. 
    more » « less
  5. Abstract To combat the threat of emerging infectious diseases in wildlife, ecoimmunologists seek to understand the complex interactions among pathogens, their hosts, and their shared environments. The cutaneous fungal pathogen Batrachochytrium dendrobatidis (Bd), has led to the decline of innumerable amphibian species, including the Panamanian golden frog (Atelopus zeteki). Given that Bd can evade or dampen the acquired immune responses of some amphibians, nonspecific immune defenses are thought to be especially important for amphibian defenses against Bd. In particular, skin secretions constitute a vital component of amphibian innate immunity against skin infections, but their role in protecting A. zeteki from Bd is unknown. We investigated the importance of this innate immune component by reducing the skin secretions from A. zeteki and evaluating their effectiveness against Bd in vitro and in vivo. Following exposure to Bd in a controlled inoculation experiment, we compared key disease characteristics (e.g., changes in body condition, prevalence, pathogen loads, and survival) among groups of frogs that had their skin secretions reduced and control frogs that maintained their skin secretions. Surprisingly, we found that the skin secretions collected from A. zeteki increased Bd growth in vitro. This finding was further supported by infection and survival patterns in the in vivo experiment where frogs with reduced skin secretions tended to have lower pathogen loads and survive longer compared to frogs that maintained their secretions. These results suggest that the skin secretions of A. zeteki are not only ineffective at inhibiting Bd but may enhance Bd growth, possibly leading to greater severity of disease and higher mortality in this highly vulnerable species. These results differ from those of previous studies in other amphibian host species that suggest that skin secretions are a key defense in protecting amphibians from developing severe chytridiomycosis. Therefore, we suggest that the importance of immune components cannot be generalized across all amphibian species or over time. Moreover, the finding that skin secretions may be enhancing Bd growth emphasizes the importance of investigating these immune components in detail, especially for species that are a conservation priority. 
    more » « less