skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Teaching Ethics in Computing: A Systematic Literature Review of ACM Computer Science Education Publications
The computing education research community now has at least 40 years of published research on teaching ethics in higher education. To examine the state of our field, we present a systematic literature review of papers in the Association for Computing Machinery computing education venues that describe teaching ethics in higher-education computing courses. Our review spans all papers published to SIGCSE, ICER, ITiCSE, CompEd, Koli Calling, and TOCE venues through 2022, with 100 papers fulfilling our inclusion criteria. Overall, we found a wide variety in content, teaching strategies, challenges, and recommendations. The majority of the papers did not articulate a conception of “ethics,” and those that did used many different conceptions, from broadly applicable ethical theories to social impact to specific computing application areas (e.g., data privacy and hacking). Instructors used many different pedagogical strategies (e.g., discussions, lectures, assignments) and formats (e.g., stand-alone courses, incorporated within a technical course). Many papers identified measuring student knowledge as a particular challenge, and 59% of papers included mention of assessments or grading. Of the 69% of papers that evaluated their ethics instruction, most used student self-report surveys, course evaluations, and instructor reflections. While many papers included calls for more ethics content in computing, specific recommendations were rarely broadly applicable, preventing a synthesis of guidelines. To continue building on the last 40 years of research and move toward a set of best practices for teaching ethics in computing, our community should delineate our varied conceptions of ethics, examine which teaching strategies are best suited for each, and explore how to measure student learning.  more » « less
Award ID(s):
2041960
PAR ID:
10486347
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Computing Education
Volume:
24
Issue:
1
ISSN:
1946-6226
Page Range / eLocation ID:
Article No.: 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate change and biodiversity loss require us to engage the next generation of scientists in addressing global ecological issues. Introducing undergraduate students to citizen science allows them to learn scientific processes and content while contributing to real‐world applications. We conducted a systematic review of literature to (1) identify what types of undergraduate courses and institutions use citizen science, (2) list the projects and platforms that have been implemented in online courses in undergraduate education, (3) examine how students participated in the projects through online courses, and (4) summarize learning objectives and reported benefits of student participation. In all, 44 studies about the use of citizen science in undergraduate online courses were found in 25 papers in the published literature. The most common projects consisted of classification of species or natural history (e.g., iNaturalist), which could be done mainly online but with data collection completed at a location available to the student. Citizen science projects were incorporated into multiple course formats (e.g., lecture, lab) and class sizes, and students were most frequently asked to collect and submit data. The most frequently reported learning outcomes included increased student interest/engagement, improved appreciation for the relevance of science to the “real world,” and practice using the scientific process, but rigorous assessment data were lacking in papers. The use of citizen science in online courses and institutions appears to be increasing, and we encourage faculty using these approaches with students to publish on their efforts, providing details about their implementation, assessment, and course context. 
    more » « less
  2. This work-in-progress paper presents preliminary findings on how teaching engineering ethics is justified by academic administrators and policymakers, drawing from data collected in a multi-institution collaborative project called “The Distributed System of Governance in Engineering Education”. The project seeks to understand the practice of engineering education reform using data collected from a larger number of oral interviews at a variety of academic institutions and other organizations in engineering education. Investigations of effective strategies for the ethical development of engineering students have been pursued extensively in engineering education research. Canvassing this literature reveals not only diverse approaches and conceptions of engineering ethics, but also a diverse set of rationales and contexts for justifying the development and implementation of engineering ethics coursework and programs. It is also evident that the students’ ethical development is shaped by how the subject is delivered, e.g., the use of case studies or “best practices”, as well as the underlying reasons given to them about why ethics is taught. Institutions send signals to their students, even without intending to, about the importance of engineering ethics to their professional identity through their choice in how and why they address this matter. Our initial analysis of interview data from over a hundred subjects from more than twenty universities demonstrates the diverse ways in which ethics education is justified. The most common reason offered are satisfying ABET accreditation requirements and complying with the recommendations of a disciplinary professional association (e.g., ASME or ASCE). Resistance to notions such as professional judgment, and the absence of any substantial reference to engineering ethics in general conversations about educational decision making and governance are other initial findings from our work. 
    more » « less
  3. This work-in-progress paper presents preliminary findings on how teaching engineering ethics is justified by academic administrators and policymakers, drawing from data collected in a multi-institution collaborative project called “The Distributed System of Governance in Engineering Education”. The project seeks to understand the practice of engineering education reform using data collected from a larger number of oral interviews at a variety of academic institutions and other organizations in engineering education. Investigations of effective strategies for the ethical development of engineering students have been pursued extensively in engineering education research. Canvassing this literature reveals not only diverse approaches and conceptions of engineering ethics, but also a diverse set of rationales and contexts for justifying the development and implementation of engineering ethics coursework and programs. It is also evident that the students’ ethical development is shaped by how the subject is delivered, e.g., the use of case studies or “best practices”, as well as the underlying reasons given to them about why ethics is taught. Institutions send signals to their students, even without intending to, about the importance of engineering ethics to their professional identity through their choice in how and why they address this matter. Our initial analysis of interview data from over a hundred subjects from more than twenty universities demonstrates the diverse ways in which ethics education is justified. The most common reason offered are satisfying ABET accreditation requirements and complying with the recommendations of a disciplinary professional association (e.g., ASME or ASCE). Resistance to notions such as professional judgment, and the absence of any substantial reference to engineering ethics in general conversations about educational decision making and governance are other initial findings from our work. 
    more » « less
  4. null (Ed.)
    Stakeholders of engineering education have recognized the need for engineering instruction in K‐12 classrooms, especially at the high school level. However, lack of engineering-specific standards and varied conceptions of engineering teaching create challenges for high school teachers to teach engineering courses. This paper explores high school teachers’ conceptions of engineering teaching in the context of an engineering education professional development (PD) workshop. We use Social Cognitive Career Theory (SCCT) to examine participants’ conceptions during two focus groups conducted as part of the PD; particularly focusing on teachers’ goals, interests, challenges, and expected outcomes of teaching a high school level engineering course. Results highlight the need for social support for teachers to sustain engineering teaching. 
    more » « less
  5. null (Ed.)
    Metacognition is awareness and control of thinking for learning. Strong metacognitive skills have the power to impact student learning and performance. While metacognition can develop over time with practice, many students struggle to meaningfully engage in metacognitive processes. In an evidence-based teaching guide associated with this paper ( https://lse.ascb.org/evidence-based-teaching-guides/student-metacognition ), we outline the reasons metacognition is critical for learning and summarize relevant research on this topic. We focus on three main areas in which faculty can foster students’ metacognition: supporting student learning strategies (i.e., study skills), encouraging monitoring and control of learning, and promoting social metacognition during group work. We distill insights from key papers into general recommendations for instruction, as well as a special list of four recommendations that instructors can implement in any course. We encourage both instructors and researchers to target metacognition to help students improve their learning and performance. 
    more » « less