The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.
Explore Research Products in the PAR It may take a few hours for recently added research products to appear in PAR search results.
Title: A learning experience elicits sex‐dependent neurogenomic responses in Bicyclus anynana butterflies
Abstract Sexually dimorphic behaviour is pervasive across animals, with males and females exhibiting different mate selection, parental care, foraging, dispersal, and territorial strategies. However, the genetic underpinnings of sexually dimorphic behaviours are poorly understood. Here we investigate gene networks and expression patterns associated with sexually dimorphic imprinting‐like learning in the butterflyBicyclus anynana. In this species, both males and females learn visual preferences, but learn preferences for different traits and use different signals as salient, unconditioned cues. To identify genes and gene networks associated with this behaviour, we examined gene expression profiles of the brains and eyes of male and female butterflies immediately post training and compared them to the same tissues of naïve individuals. We found more differentially expressed genes and a greater number of associated gene networks in the eyes, indicating a role of the peripheral nervous system in visual imprinting‐like learning. Females had higher chemoreceptor expression levels than males, supporting the hypothesized sexual dimorphic use of chemical cues during the learning process. In addition, genes that influenceB. anynanawing patterns (sexual ornaments), such asinvected,spalt, andapterous, were also differentially expressed in the brain and eye, suggesting that these genes may influence both sexual ornaments and the preferences for these ornaments. Our results indicate dynamic and sex‐specific responses to social scenario in both the peripheral and central nervous systems and highlight the potential role of wing patterning genes in mate preference and learning across the Lepidoptera. more »« less
Loh, Ling S; Hanly, Joseph J; Carter, Alexander; Chatterjee, Martik; Tsimba, Martina; Shodja, Donya N; Livraghi, Luca; Day, Christopher R; Reed, Robert D; McMillan, W Owen; et al
(, PLOS Biology)
Khila, Abderrahman
(Ed.)
The evolution of sexual secondary characteristics necessitates regulatory factors that confer sexual identity to differentiating tissues and cells. InColias eurythemebutterflies, males exhibit two specialized wing scale types—ultraviolet-iridescent (UVI) and spatulate scales—which are absent in females and likely integral to male courtship behavior. This study investigates the regulatory mechanisms and single-nucleus transcriptomics underlying these two sexually dimorphic cell types during wing development. We show thatDoublesex(Dsx) expression is itself dimorphic and required to repress the UVI cell state in females, while unexpectedly, UVI activation in males is independent fromDsx. In the melanic marginal band,Dsxis required in each sex to enforce the presence of spatulate scales in males, and their absence in females. Single-nucleus RNAseq reveals that UVI and spatulate scale cell precursors each show distinctive gene expression profiles at 40% of pupal development, with marker genes that include regulators of transcription, cell signaling, cytoskeletal patterning, and chitin secretion. Both male-specific cell types share a low expression of theBric-a-brac(Bab) transcription factor, a key repressor of the UVI fate. Bab ChIP-seq profiling suggests that Bab binds thecis-regulatory regions of gene markers associated to UVI fate, including potential effector genes involved in the regulation of cytoskeletal processes and chitin secretion, and loci showing signatures of recent selective sweeps in a UVI-polymorphic population. These findings open new avenues for exploring wing patterning and scale development, shedding light on the mechanisms driving the specification of sex-specific cell states and the differentiation of specialized cell ultrastructures.
Chakraborty, Mahul; Lara, Angelica Guadalupe; Dang, Andrew; McCulloch, Kyle J.; Rainbow, Dylan; Carter, David; Ngo, Luna Thanh; Solares, Edwin; Said, Iskander; Corbett-Detig, Russell B.; et al
(, Proceedings of the National Academy of Sciences)
The acquisition of novel sexually dimorphic traits poses an evolutionary puzzle: How do new traits arise and become sex-limited? Recently acquired color vision, sexually dimorphic in animals like primates and butterflies, presents a compelling model for understanding how traits become sex-biased. For example, someHeliconiusbutterflies uniquely possess UV (ultraviolet) color vision, which correlates with the expression of two differentially tuned UV-sensitive rhodopsins, UVRh1 and UVRh2. To discover how such traits become sexually dimorphic, we studiedHeliconius charithonia, which exhibits female-specific UVRh1 expression. We demonstrate that females, but not males, discriminate different UV wavelengths. Through whole-genome shotgun sequencing and assembly of theH. charithoniagenome, we discovered thatUVRh1is present on the W chromosome, making it obligately female-specific. By knocking outUVRh1, we show that UVRh1 protein expression is absent in mutant female eye tissue, as in wild-type male eyes. A PCR survey ofUVRh1sex-linkage across the genus shows that species with female-specific UVRh1 expression lackUVRh1gDNA in males. Thus, acquisition of sex linkage is sufficient to achieve female-specific expression ofUVRh1, though this does not preclude other mechanisms, likecis-regulatory evolution from also contributing. Moreover, both this event, and mutations leading to differential UV opsin sensitivity, occurred early in the history ofHeliconius. These results suggest a path for acquiring sexual dimorphism distinct from existing mechanistic models. We propose a model where gene traffic to heterosomes (the W or the Y) genetically partitions a trait by sex before a phenotype shifts (spectral tuning of UV sensitivity).
Keagy, Jason; Hofmann, Hans A; Boughman, Janette W
(, Proceedings of the Royal Society B: Biological Sciences)
Mate choice plays a fundamental role in speciation, yet we know little about the molecular mechanisms that underpin this crucial decision-making process. Stickleback fish differentially adapted to limnetic and benthic habitats are reproductively isolated and females of each species use different male traits to evaluate prospective partners and reject heterospecific males. Here, we integrate behavioural data from a mate choice experiment with gene expression profiles from the brains of females actively deciding whether to mate. We find substantial gene expression variation between limnetic and benthic females, regardless of behavioural context, suggesting general divergence in constitutive gene expression patterns, corresponding to their genetic differentiation. Intriguingly, female gene co-expression modules covary with male display traits but in opposing directions for sympatric populations of the two species, suggesting male displays elicit a dynamic neurogenomic response that reflects known differences in female preferences. Furthermore, we confirm the role of numerous candidate genes previously implicated in female mate choice in other species, suggesting evolutionary tinkering with these conserved molecular processes to generate divergent mate preferences. Taken together, our study adds important new insights to our understanding of the molecular processes underlying female decision-making critical for generating sexual isolation and speciation.
Rodriguez-Caro, Fernando; Fenner, Jennifer; Bhardwaj, Shivam; Cole, Jared; Benson, Caleb; Colombara, Alexandra M; Papa, Riccardo; Brown, Matthew W; Martin, Arnaud; Range, Ryan C; et al
(, Molecular Biology and Evolution)
True, John
(Ed.)
Abstract Sexually dimorphic development is responsible for some of the most remarkable phenotypic variation found in nature. Alternative splicing of the transcription factor gene doublesex (dsx) is a highly conserved developmental switch controlling the expression of sex-specific pathways. Here, we leverage sex-specific differences in butterfly wing color pattern to characterize the genetic basis of sexually dimorphic development. We use RNA-seq, immunolocalization, and motif binding site analysis to test specific predictions about the role of dsx in the development of structurally based ultraviolet (UV) wing patterns in Zerene cesonia (Southern Dogface). Unexpectedly, we discover a novel duplication of dsx that shows a sex-specific burst of expression associated with the sexually dimorphic UV coloration. The derived copy consists of a single exon that encodes a DNA binding but no protein-binding domain and has experienced rapid amino-acid divergence. We propose the novel dsx paralog may suppress UV scale differentiation in females, which is supported by an excess of Dsx-binding sites at cytoskeletal and chitin-related genes with sex-biased expression. These findings illustrate the molecular flexibility of the dsx gene in mediating the differentiation of secondary sexual characteristics.
BACKGROUND Charles Darwin’s Descent of Man, and Selection in Relation to Sex tackled the two main controversies arising from the Origin of Species: the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE
Ernst, David A., Agcaoili, Gabrielle A., Merrill, Abbigail N., and Westerman, Erica L. A learning experience elicits sex‐dependent neurogenomic responses in Bicyclus anynana butterflies. Retrieved from https://par.nsf.gov/biblio/10486437. Molecular Ecology 32.12 Web. doi:10.1111/mec.16920.
Ernst, David A., Agcaoili, Gabrielle A., Merrill, Abbigail N., & Westerman, Erica L. A learning experience elicits sex‐dependent neurogenomic responses in Bicyclus anynana butterflies. Molecular Ecology, 32 (12). Retrieved from https://par.nsf.gov/biblio/10486437. https://doi.org/10.1111/mec.16920
Ernst, David A., Agcaoili, Gabrielle A., Merrill, Abbigail N., and Westerman, Erica L.
"A learning experience elicits sex‐dependent neurogenomic responses in Bicyclus anynana butterflies". Molecular Ecology 32 (12). Country unknown/Code not available: John Wiley & Sons Ltd. https://doi.org/10.1111/mec.16920.https://par.nsf.gov/biblio/10486437.
@article{osti_10486437,
place = {Country unknown/Code not available},
title = {A learning experience elicits sex‐dependent neurogenomic responses in Bicyclus anynana butterflies},
url = {https://par.nsf.gov/biblio/10486437},
DOI = {10.1111/mec.16920},
abstractNote = {Abstract Sexually dimorphic behaviour is pervasive across animals, with males and females exhibiting different mate selection, parental care, foraging, dispersal, and territorial strategies. However, the genetic underpinnings of sexually dimorphic behaviours are poorly understood. Here we investigate gene networks and expression patterns associated with sexually dimorphic imprinting‐like learning in the butterflyBicyclus anynana. In this species, both males and females learn visual preferences, but learn preferences for different traits and use different signals as salient, unconditioned cues. To identify genes and gene networks associated with this behaviour, we examined gene expression profiles of the brains and eyes of male and female butterflies immediately post training and compared them to the same tissues of naïve individuals. We found more differentially expressed genes and a greater number of associated gene networks in the eyes, indicating a role of the peripheral nervous system in visual imprinting‐like learning. Females had higher chemoreceptor expression levels than males, supporting the hypothesized sexual dimorphic use of chemical cues during the learning process. In addition, genes that influenceB. anynanawing patterns (sexual ornaments), such asinvected,spalt, andapterous, were also differentially expressed in the brain and eye, suggesting that these genes may influence both sexual ornaments and the preferences for these ornaments. Our results indicate dynamic and sex‐specific responses to social scenario in both the peripheral and central nervous systems and highlight the potential role of wing patterning genes in mate preference and learning across the Lepidoptera.},
journal = {Molecular Ecology},
volume = {32},
number = {12},
publisher = {John Wiley & Sons Ltd},
author = {Ernst, David A. and Agcaoili, Gabrielle A. and Merrill, Abbigail N. and Westerman, Erica L.},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.