skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geometries with mismatched branes
A<sc>bstract</sc> We study Randall-Sundrum two brane setups with mismatched brane tensions. For the vacuum solutions, boundary conditions demand that the induced metric on each of the branes is either de Sitter, Anti-de Sitter, or Minkowski. For incompatible boundary conditions, the bulk metric is necessarily time-dependent. This introduces a new class of time-dependent solutions with the potential to address cosmological issues and provide alternatives to conventional inflationary (or contracting) scenarios. We take a first step in this paper toward such solutions. One important finding is that the resulting solutions can be very succinctly described in terms of an effective action involving only the induced metric on either one of the branes and the radion field. But the full geometry cannot necessarily be simply described with a single coordinate patch. We concentrate here on the time- dependent solutions but argue that supplemented with a brane stabilization mechanism one can potentially construct interesting cosmological models this way. This is true both with and without a brane stabilization mechanism.  more » « less
Award ID(s):
1915071
PAR ID:
10486485
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract In flux compactifications of type IIB string theory with D3 and seven-branes, the negative induced D3 charge localized on seven-branes leads to an apparently pathological profile of the metric sufficiently close to the source. With the volume modulus stabilized in a KKLT de Sitter vacuum this pathological region takes over a significant part of the entire compactification, threatening to spoil the KKLT effective field theory. In this paper we employ the Seiberg-Witten solution of pure SU( N ) super Yang-Mills theory to argue that wrapped seven-branes can be thought of as bound states of more microscopic exotic branes. We argue that the low-energy worldvolume dynamics of a stack of n such exotic branes is given by the ( A 1 , A n− 1 ) Argyres-Douglas theory. Moreover, the splitting of the perturbative (in α ′) seven-brane into its constituent branes at the non-perturbative level resolves the apparently pathological region close to the seven-brane and replaces it with a region of $$ \mathcal{O} $$ O (1) Einstein frame volume. While this region generically takes up an $$ \mathcal{O} $$ O (1) fraction of the compactification in a KKLT de Sitter vacuum we argue that a small flux superpotential dynamically ensures that the 4d effective field theory of KKLT remains valid nevertheless. 
    more » « less
  2. A<sc>bstract</sc> Conformal Freeze-in (COFI) scenario postulates a dark sector described by a conformal field theory (CFT) at energies above the “gap scale” in the keV – MeV range. At the gap scale, the dark CFT undergoes confinement, and one of the resulting bound states is identified as the dark matter candidate. In this paper, we study this model in the context of the AdS/CFT correspondence with a focus on the mechanism of the infrared (IR) breaking of conformal invariance in the dark sector. We construct the holographic dual to the conformal dark sector, given by a Randall-Sundrum-like model in 5D, where the Standard Model (SM) fields and the dark matter candidate are placed on the ultraviolet (UV) and IR branes respectively. The separation between the UV and IR branes is stabilized by a bulk scalar field, naturally generating a hierarchy between the electroweak scale and the gap scale. We find that the parameter space of COFI comprises two distinct branches of CFT’s living on the Anti-de-Sitter (AdS) boundary, each corresponding to a different UV boundary condition. The two branches of CFT’s result in different radion potentials. The confinement of the CFT is dual to the spontaneous symmetry breaking by the 5D radion potential. We then use this dual 5D setup to study the cosmological confining phase transition in the dark sector. We find the viable parameter space of the theory which allows the phase transition to complete promptly without significant supercooling. 
    more » « less
  3. A<sc>bstract</sc> We study classical wormhole solutions in 3D gravity with end-of-the-world (EOW) branes, conical defects, kinks, and punctures. These solutions compute statistical averages of an ensemble of boundary conformal field theories (BCFTs) related to universal asymptotics of OPE data extracted from the 2D conformal bootstrap. Conical defects connect BCFT bulk operators; branes join BCFT boundary intervals with identical boundary conditions; kinks (1D defects along branes) link BCFT boundary operators; and punctures (0D defects) are endpoints where conical defects terminate on branes. We provide evidence for a correspondence between the gravity theory and the ensemble. In particular, the agreement of theg-function dependence results from an underlying topological aspect of the on-shell EOW brane action, from which a BCFT analog of the Schlenker-Witten theorem also follows. 
    more » « less
  4. A<sc>bstract</sc> In models with extra dimensions, matter particles can be easily localized to a ‘brane world’, but gravitational attraction tends to spread out in the extra dimensions unless they are small. Strong warping gradients can help localize gravity closer to the brane. In this note we give a mathematically rigorous proof that the internal wave-function of the massless graviton is constant as an eigenfunction of the weighted Laplacian, and hence is a power of the warping as a bound state in an analogue Schrödinger potential. This holds even in presence of singularities induced by thin branes. We also reassess the status of AdS vacuum solutions where the graviton is massive. We prove a bound on scale separation for such models, as an application of our recent results on KK masses. We also use them to estimate the scale at which gravity is localized, without having to compute the spectrum explicitly. For example, we point out that localization can be obtained at least up to the cosmological scale in string/M-theory solutions with infinite-volume Riemann surfaces; and in a known class of$$ \mathcal{N} $$ N = 4 models, when the number of NS5- and D5-branes is roughly equal. 
    more » « less
  5. A<sc>bstract</sc> We examine the Abelian Higgs model in (d+ 1)-dimensional anti-de Sitter space with an ultraviolet brane. The gauge symmetry is broken by a bulk Higgs vacuum expectation value triggered on the brane. We propose two separate Goldstone boson equivalence theorems for the boundary and bulk degrees of freedom. We compute the holographic self-energy of the gauge field and show that its spectrum is either a continuum, gapped continuum, or a discretuum as a function of the Higgs bulk mass. When the Higgs has no bulk mass, the AdS isometries are unbroken. We find in that case that the dual CFT has a non-conserved U(1) current whose anomalous dimension is proportional to the square of the Higgs vacuum expectation value. When the Higgs background weakly breaks the AdS isometries, we present an adapted WKB method to solve the gauge field equations. We show that the U(1) current dimension runs logarithmically with the energy scale in accordance with a nearly-marginal U(1)-breaking deformation of the CFT. 
    more » « less