skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forester and Logger Response to Emerald Ash Borer in Massachusetts and Vermont: A Secondary Disturbance
Abstract Forester and logger responses to the invasive emerald ash borer (EAB) could substantially affect regions across the United States. We analyzed forester and logger responses to EAB in Massachusetts and Vermont, exploring characteristics associated with purposeful targeting of substantial ash properties; managing forests differently because of EAB; and regeneration goals. One-third of respondents increased timber sales on ash properties, motivated by ecological, not economic, impacts of EAB. Nearly 60% said EAB changed their management activity in stands with ash; changes influenced by the ecological impact of EAB and not economic factors. Those influenced by EAB’s ecological impact to choose properties with substantial ash were more likely to have increased harvest area size, sawtimber removal, and harvest intensity. Loggers were more likely than foresters to remove small-diameter ash and low-grade trees. Both rated regenerating economically valuable species well adapted to the site as their highest essential priority.  more » « less
Award ID(s):
1832210
PAR ID:
10486591
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Journal of Forestry
Date Published:
Journal Name:
Journal of Forestry
Volume:
121
Issue:
4
ISSN:
0022-1201
Page Range / eLocation ID:
319 to 332
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Invasive forest pests can affect the composition and physical structure of forest canopies that may facilitate invasion by non‐native plants. However, it remains unclear whether this process is generalizable across invasive plant species at broad spatial scales, and how other landscape characteristics may simultaneously facilitate non‐native plant invasion. Here, we assembled a dataset of over 3000 repeatedly measured forest plots and quantified the impact of emerald ash borer (EAB,Agrilus planipennis) residence time, land cover, and forest structure on the accumulation and coverage of invasive plants. We show plots in counties with longer EAB residences tended to accumulate more invasive plants than plots with shorter EAB residences. On average, nearly half of the plots with ash (Fraxinusspp.) in counties with EAB accumulated an additional 0.48 invasive plant species over the 5‐ to 6‐year resample interval compared to plots with ash in counties without EAB at the time of sampling. Increases in invasive species coverage were also evident in counties with EAB—although residence time did not have a strong effect, while forest gap fraction and vertical complexity were each negatively associated with increased coverage. This work has implications for understanding how invasive forest pests can facilitate the spread of non‐native plants. 
    more » « less
  2. The emerald ash borer (EAB), Agrilus planipennis, is a destructive invasive insect of North American ash (Fraxinus). While microorganisms associated with the beetle may contribute to tree decline and death, the microbial community succession during an EAB attack is unknown. We repeatedly sampled the bottom two meters of green ash (Fraxinus pennsylvanica) and black ash (Fraxinus nigra) in seven stands across an infestation gradient over four years. Amplicon libraries were sequenced from control phloem tissue of trees showing no symptoms of infestation, uninfested phloem of trees with EAB, infested phloem (galleries), frass, and larvae to determine if there are shifts in the fungal and bacterial communities as trees succumb to EAB attack. We found that the control phloem communities significantly differed from the beetle-infested phloem in both tree species. Furthermore, as EAB progressed in its attack from the top limbs to the tree’s base, the microbial communities in uninfested phloem outside the galleries shifted away from communities in phloem of control trees. In infested phloem, more than 80% of the detected taxa were absent from control trees (i.e., most taxa were non-latent). However, the relative abundance of latent taxa in infested phloem was higher than the relative abundance of the non-latent taxa, especially for potential canker-causing fungi, which increased 21-fold and 32-fold in black ash and green ash trees, respectively. These findings provide valuable insight into how a woodboring beetle shapes the microbial environment within trees over time, influencing the overall microbial diversity, such as canker-causing and wood decay taxa. 
    more » « less
  3. Midwestern forests are currently impacted by two prominent invaders, the emerald ash borer (EAB; Agrilus planipennis) and Amur honeysuckle (AHS; Lonicera maackii). The loss of ash (Fraxinus spp.) trees due to EAB invasion can further facilitate AHS invasion, driving changes in the composition of forest leaf litter to reflect a greater portion of labile, more easily decomposed litter. To evaluate the extent to which these changes alter ecosystem function, we conducted litter bag and culture-based decomposition experiments using leaf litter from sugar maple (Acer saccharum), oak (Quercus spp.), black ash (Fraxinus nigra), green ash (Fraxinus pennsylvanica), spicebush (Lindera benzoin) and AHS. To further understand the mechanism driving differences in decay rates, we inoculated six species of decomposing fungi separately onto both single species and multispecies (half AHS and half native species) leaf litter and measured decomposition rate, fungal growth and enzymatic activity in laboratory-based cultures. AHS leaf litter decomposed faster, had increased fungal growth, and had higher activity for carbon degrading enzymes compared to native species leaf litter. Furthermore, multispecies mixtures followed the same patterns as AHS, suggesting that the addition of AHS to leaf litter to native litter will accelerate ecosystem functions related to carbon breakdown. Consequently, forests that experience the invasion of AHS and EAB induced loss of ash are likely to have faster rates of decomposition, potentially resulting in an influx of available nutrients. 
    more » « less
  4. ABSTRACT Plants have coevolved with herbivorous insects for millions of years, resulting in variation in resistance both within and between species. Using a manipulative experiment combined with untargeted metabolomics, microbiome sequencing and transcriptomics approaches, we investigated the roles of plant metabolites and the microbiome in defence mechanisms in native resistant Manchurian ash (Fraxinus mandshurica) trees and non‐native susceptible velvet ash (Fraxinus velutina) trees against the highly invasive emerald ash borer (EAB,Agrilus planipennis). Comparative transcriptomics and metabolomics analyses show that the phenylpropanoid pathway, which is enriched in differentially expressed genes and differentially abundant metabolites, may serve as a potential regulator of resistance. Additionally, the microbiome is distinctly shifted in two ash species. Indicator taxa analysis reveals that the distinct genera are dominant in the galleries of two ash species, for example,Pseudomonasin velvet, andHafnia‐Obesumbacteriumin Manchurian. The strong correlation between indicator taxa and metabolites suggests that the chemical compounds might impact the microbial community in phloem directly or indirectly, or vice versa. This study significantly enhances our understanding of the variation in resistance between ash species and its contribution to the invasion success of EAB, providing valuable insights for the development of pest management strategies. 
    more » « less
  5. Abstract Plant functional groups (FGs) differ in their response to global changes, although species within those groups also vary in such responses. Both species and FG responses to global change are likely influenced by species interactions such as inter‐specific competition and facilitation, which are prevalent in species mixtures but not monocultures. As most studies focus on responses of plants growing in either monocultures or mixtures, but rarely both, it remains unclear how interspecific interactions in diverse ecological communities, especially among species in different FGs, modify FG responses to global changes. To address these issues, we leveraged data from a 16‐species, 24‐year perennial grassland experiment to examine plant FG biomass responses to atmospheric CO2, and N inputs at different planted diversity. FGs differed in their responses to N and CO2treatments in monocultures. Such differences were amplified in mixtures, where N enrichment strongly increased C3 grass success at ambient CO2and C4 grass success at elevated CO2. Legumes declined with N enrichment in mixtures at both CO2levels and increased with elevated CO2in the initial years of the experiment. Our results suggest that previous studies that considered responses to global changes in monocultures may underestimate biomass changes in diverse communities where interspecific interactions can amplify responses. Such effects of interspecific interactions on responses of FGs to global change may impact community composition over time and consequently influence ecosystem functions. 
    more » « less