skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forester and Logger Response to Emerald Ash Borer in Massachusetts and Vermont: A Secondary Disturbance
Abstract Forester and logger responses to the invasive emerald ash borer (EAB) could substantially affect regions across the United States. We analyzed forester and logger responses to EAB in Massachusetts and Vermont, exploring characteristics associated with purposeful targeting of substantial ash properties; managing forests differently because of EAB; and regeneration goals. One-third of respondents increased timber sales on ash properties, motivated by ecological, not economic, impacts of EAB. Nearly 60% said EAB changed their management activity in stands with ash; changes influenced by the ecological impact of EAB and not economic factors. Those influenced by EAB’s ecological impact to choose properties with substantial ash were more likely to have increased harvest area size, sawtimber removal, and harvest intensity. Loggers were more likely than foresters to remove small-diameter ash and low-grade trees. Both rated regenerating economically valuable species well adapted to the site as their highest essential priority.  more » « less
Award ID(s):
1832210
PAR ID:
10486591
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Journal of Forestry
Date Published:
Journal Name:
Journal of Forestry
Volume:
121
Issue:
4
ISSN:
0022-1201
Page Range / eLocation ID:
319 to 332
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Invasive forest pests can affect the composition and physical structure of forest canopies that may facilitate invasion by non‐native plants. However, it remains unclear whether this process is generalizable across invasive plant species at broad spatial scales, and how other landscape characteristics may simultaneously facilitate non‐native plant invasion. Here, we assembled a dataset of over 3000 repeatedly measured forest plots and quantified the impact of emerald ash borer (EAB,Agrilus planipennis) residence time, land cover, and forest structure on the accumulation and coverage of invasive plants. We show plots in counties with longer EAB residences tended to accumulate more invasive plants than plots with shorter EAB residences. On average, nearly half of the plots with ash (Fraxinusspp.) in counties with EAB accumulated an additional 0.48 invasive plant species over the 5‐ to 6‐year resample interval compared to plots with ash in counties without EAB at the time of sampling. Increases in invasive species coverage were also evident in counties with EAB—although residence time did not have a strong effect, while forest gap fraction and vertical complexity were each negatively associated with increased coverage. This work has implications for understanding how invasive forest pests can facilitate the spread of non‐native plants. 
    more » « less
  2. Midwestern forests are currently impacted by two prominent invaders, the emerald ash borer (EAB; Agrilus planipennis) and Amur honeysuckle (AHS; Lonicera maackii). The loss of ash (Fraxinus spp.) trees due to EAB invasion can further facilitate AHS invasion, driving changes in the composition of forest leaf litter to reflect a greater portion of labile, more easily decomposed litter. To evaluate the extent to which these changes alter ecosystem function, we conducted litter bag and culture-based decomposition experiments using leaf litter from sugar maple (Acer saccharum), oak (Quercus spp.), black ash (Fraxinus nigra), green ash (Fraxinus pennsylvanica), spicebush (Lindera benzoin) and AHS. To further understand the mechanism driving differences in decay rates, we inoculated six species of decomposing fungi separately onto both single species and multispecies (half AHS and half native species) leaf litter and measured decomposition rate, fungal growth and enzymatic activity in laboratory-based cultures. AHS leaf litter decomposed faster, had increased fungal growth, and had higher activity for carbon degrading enzymes compared to native species leaf litter. Furthermore, multispecies mixtures followed the same patterns as AHS, suggesting that the addition of AHS to leaf litter to native litter will accelerate ecosystem functions related to carbon breakdown. Consequently, forests that experience the invasion of AHS and EAB induced loss of ash are likely to have faster rates of decomposition, potentially resulting in an influx of available nutrients. 
    more » « less
  3. Abstract Plant functional groups (FGs) differ in their response to global changes, although species within those groups also vary in such responses. Both species and FG responses to global change are likely influenced by species interactions such as inter‐specific competition and facilitation, which are prevalent in species mixtures but not monocultures. As most studies focus on responses of plants growing in either monocultures or mixtures, but rarely both, it remains unclear how interspecific interactions in diverse ecological communities, especially among species in different FGs, modify FG responses to global changes. To address these issues, we leveraged data from a 16‐species, 24‐year perennial grassland experiment to examine plant FG biomass responses to atmospheric CO2, and N inputs at different planted diversity. FGs differed in their responses to N and CO2treatments in monocultures. Such differences were amplified in mixtures, where N enrichment strongly increased C3 grass success at ambient CO2and C4 grass success at elevated CO2. Legumes declined with N enrichment in mixtures at both CO2levels and increased with elevated CO2in the initial years of the experiment. Our results suggest that previous studies that considered responses to global changes in monocultures may underestimate biomass changes in diverse communities where interspecific interactions can amplify responses. Such effects of interspecific interactions on responses of FGs to global change may impact community composition over time and consequently influence ecosystem functions. 
    more » « less
  4. Abstract Interactions between natural selection and population dynamics are central to both evolutionary‐ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth—underappreciated outcomes that have major implications in a rapidly changing world. 
    more » « less
  5. Abstract The 2010Deepwater Horizon(DwH) disaster challenged the integrity of the Gulf of Mexico (GOM) large‐marine ecosystem at unprecedented scales, prompting concerns of devastating injury for GOM fisheries in the post‐spill decade. Following the catastrophe, projected economic losses for regional commercial, recreational, and mariculture sectors for the decade after oiling were US$3.7–8.7 billion overall, owing to the vulnerability of economically prized, primarily nearshore taxa that support fishing communities. State and federal fisheries data during 2000–2017 indicated that GOM fishery sectors appeared to serve as remarkable anchors of resilience following the largest accidental marine oil spill in human history. Evidence of post‐disaster impacts on fisheries economies was negligible. Rather, GOM commercial sales during 2010–2017 were US$0.8–1.5 billion above forecasts derived using pre‐spill (2000–2009) trajectories, while pre‐ and post‐spill recreational fishery trends did not differ appreciably. No post‐spill shifts in target species or effort distribution across states were apparent to explain these findings. Unraveling the mechanisms for this unforeseen stability represents an important avenue for understanding the vulnerability or resilience of human–natural systems to future disturbances. FollowingDwH, the causes for fishery responses are likely multifaceted and complex (including exogenous economic forces that typically affect fisheries‐dependent data), but appear partially explained by the relative ecological stability of coastal fishery assemblages despite widespread oiling, which has been corroborated by multiple fishery‐independent surveys across the northern GOM. Additionally, we hypothesize that damage payments to fishermen led to acquisition or retooling of commercial fisheries infrastructure, and subsequent rises in harvest effort. Combined, these social–ecological dynamics likely aided recovery of stressed coastal GOM communities in the years afterDwH, although increased fishing pressure in the post‐spill era may have consequences for future GOM ecosystem structure, function, and resilience. 
    more » « less