skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Draft genome sequence of Paenibacillus sp. strain RC67, an isolate from a long-term forest soil warming experiment in Petersham, Massachusetts
ABSTRACT Paenibacillussp. strain RC67 was isolated from the Harvard Forest long-term soil warming experiment. The assembled genome is a single contig with 7,963,753 bp and 99.4% completion. Genome annotation suggests that the isolate is of a novel bacterial species.  more » « less
Award ID(s):
1832210 1949882 1749206
PAR ID:
10486593
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Newton, Irene L.
Publisher / Repository:
American Society for Microbiology Microbiology Resource Announcements
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
12
Issue:
11
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Becket, Elinne (Ed.)
    ABSTRACT Here we report the complete, closed genome of the non-toxicMicrocystis aeruginosaPCC7806 ΔmcyBmutant strain. This genome is 5,103,923 bp long, with a GC content of 42.07%. Compared to the published wild-type genome (Microcystis aeruginosaPCC7806SL), there is evidence of accumulated mutations beyond the inserted chloramphenicol resistance marker. 
    more » « less
  2. Hudson, André O (Ed.)
    ABSTRACT Here, we report the draft genome ofAureococcus anophagefferensstrain CCMP1851, which is susceptible to the virusKratosvirus quantuckense. CCMP1851 complements an available genome for a virus-resistant strain (CCMP1850) isolated from the same bloom. Future studies can now use this genome to examine genetic hints of virus resistance and susceptibility. 
    more » « less
  3. Abstract PremisePectocarya recurvata(Boraginaceae, subfamily Cynoglossoideae), a species native to the Sonoran Desert (North America), has served as a model system for a suite of ecological and evolutionary studies. However, no reference genomes are currently available in Cynoglossoideae. A high‐quality reference genome forP. recurvatawould be valuable for addressing questions in this system and across broader taxonomic scales. MethodsUsing PacBio HiFi sequencing, we assembled a reference genome forP. recurvataand annotated coding regions with full‐length transcripts from an Iso‐Seq library. We assessed genome completeness with BUSCO andk‐mer analysis, and estimated the genome size of six individuals using flow cytometry. ResultsThe chromosome‐scale genome assembly forP. recurvatawas 216.0 Mbp long (N50 = 12.1 Mbp). Previous observations indicatedP. recurvatais 2n = 24. Our assembly included 12 primary contigs (158.3 Mbp) containing 30,655 genes with telomeres at 23 out of 24 ends. Flow cytometry measurements from the same population included two plants with 1C = 196.9 Mbp, the smallest measured for Boraginaceae, and four with 1C = 385.8 Mbp, which is consistent with tetraploidy in this population. DiscussionTheP. recurvatagenome assembly and annotation provide a high‐quality genomic resource in a sparsely represented area of the angiosperm phylogeny. This new reference genome will facilitate answering open questions in ecophysiology, biogeography, and systematics. 
    more » « less
  4. Abstract Until recently, precise genome editing has been limited to a few organisms. The ability of Cas9 to generate double stranded DNA breaks at specific genomic sites has greatly expanded molecular toolkits in many organisms and cell types. Before CRISPR‐Cas9 mediated genome editing,P. patenswas unique among plants in its ability to integrate DNA via homologous recombination. However, selection for homologous recombination events was required to obtain edited plants, limiting the types of editing that were possible. Now with CRISPR‐Cas9, molecular manipulations inP. patenshave greatly expanded. This protocol describes a method to generate a variety of different genome edits. The protocol describes a streamlined method to generate the Cas9/sgRNA expression constructs, design homology templates, transform, and quickly genotype plants. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Constructing the Cas9/sgRNA transient expression vector Alternate Protocol 1: Shortcut to generating single and pooled Cas9/sgRNA expression vectors Basic Protocol 2: Designing the oligonucleotide‐based homology‐directed repair (HDR) template Alternate Protocol 2: Designing the plasmid‐based HDR template Basic Protocol 3: Inducing genome editing by transforming CRISPR vector intoP. patensprotoplasts Basic Protocol 4: Identifying edited plants. 
    more » « less
  5. Henkin, Tina M (Ed.)
    ABSTRACT Whole genome sequencing has revealed that the genome ofStaphylococcus aureuspossesses an uncharacterized 5-gene operon (SAOUHSC_00088–00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus assscfor staphylococcal surface carbohydrate. We found that thesscgenes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed inEscherichia coliand extracted by heat treatment. Ssc was also conjugated to AcrA fromCampylobacter jejuniinE. coliusing protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting ofN-acetylgalactosamine. We further demonstrated that the expression of thesscgenes inS. aureusaffected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCESurface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens.Staphylococcus aureusproduces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide inS. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide. 
    more » « less